Goto

Collaborating Authors

Results


High-level Approaches to Detect Malicious Political Activity on Twitter

arXiv.org Artificial Intelligence

Our work represents another step into the detection and prevention of these ever-more present political manipulation efforts. We, therefore, start by focusing on understanding what the state-of-the-art approaches lack -- since the problem remains, this is a fair assumption. We find concerning issues within the current literature and follow a diverging path. Notably, by placing emphasis on using data features that are less susceptible to malicious manipulation and also on looking for high-level approaches that avoid a granularity level that is biased towards easy-to-spot and low impact cases. We designed and implemented a framework -- Twitter Watch -- that performs structured Twitter data collection, applying it to the Portuguese Twittersphere. We investigate a data snapshot taken on May 2020, with around 5 million accounts and over 120 million tweets (this value has since increased to over 175 million). The analyzed time period stretches from August 2019 to May 2020, with a focus on the Portuguese elections of October 6th, 2019. However, the Covid-19 pandemic showed itself in our data, and we also delve into how it affected typical Twitter behavior. We performed three main approaches: content-oriented, metadata-oriented, and network interaction-oriented. We learn that Twitter's suspension patterns are not adequate to the type of political trolling found in the Portuguese Twittersphere -- identified by this work and by an independent peer - nor to fake news posting accounts. We also surmised that the different types of malicious accounts we independently gathered are very similar both in terms of content and interaction, through two distinct analysis, and are simultaneously very distinct from regular accounts.


Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities

arXiv.org Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.


Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges

arXiv.org Artificial Intelligence

As we make tremendous advances in machine learning and artificial intelligence technosciences, there is a renewed understanding in the AI community that we must ensure that humans being are at the center of our deliberations so that we don't end in technology-induced dystopias. As strongly argued by Green in his book Smart Enough City, the incorporation of technology in city environs does not automatically translate into prosperity, wellbeing, urban livability, or social justice. There is a great need to deliberate on the future of the cities worth living and designing. There are philosophical and ethical questions involved along with various challenges that relate to the security, safety, and interpretability of AI algorithms that will form the technological bedrock of future cities. Several research institutes on human centered AI have been established at top international universities. Globally there are calls for technology to be made more humane and human-compatible. For example, Stuart Russell has a book called Human Compatible AI. The Center for Humane Technology advocates for regulators and technology companies to avoid business models and product features that contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical challenges to a successful deployment of AI or ML in human-centric applications, with a particular emphasis on the convergence of these challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions.


9 Jobs That Are at Risk of Being Replaced by AI

#artificialintelligence

Do you believe that artificial intelligence (AI) is powerful and smart enough to take over the majority of jobs in the future? Should people start rethinking their career choices and choose jobs that are the least likely to become obsolete thanks to automation? According to Sinovations Ventures' Dr. Kai-Fu Lee, predicting the future of tech in China, robots are likely to replace 50 percent of all jobs in the next 10 years. The influential technologist has 50 million followers on Chinese social networks. He recently told CNBC that AI is the wave of the future, calling it the "singular thing that will be larger than all of human tech revolutions added together, including electricity, [the] industrial revolution, internet, mobile internet -- because AI is pervasive."


A Survey on Edge Intelligence

arXiv.org Artificial Intelligence

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.


Computa\c{c}\~ao Urbana da Teoria \`a Pr\'atica: Fundamentos, Aplica\c{c}\~oes e Desafios

arXiv.org Artificial Intelligence

The growing of cities has resulted in innumerable technical and managerial challenges for public administrators such as energy consumption, pollution, urban mobility and even supervision of private and public spaces in an appropriate way. Urban Computing emerges as a promising paradigm to solve such challenges, through the extraction of knowledge, from a large amount of heterogeneous data existing in urban space. Moreover, Urban Computing correlates urban sensing, data management, and analysis to provide services that have the potential to improve the quality of life of the citizens of large urban centers. Consider this context, this chapter aims to present the fundamentals of Urban Computing and the steps necessary to develop an application in this area. To achieve this goal, the following questions will be investigated, namely: (i) What are the main research problems of Urban Computing?; (ii) What are the technological challenges for the implementation of services in Urban Computing?; (iii) What are the main methodologies used for the development of services in Urban Computing?; and (iv) What are the representative applications in this field?


China's Artificial Intelligence is Fueling Innovation

#artificialintelligence

China's massive investment in AI is changing the entire world at an accelerating rate. Just like climate change is accelerating, so is AI. Recently Elon Musk at a fireside debate with the original founder of Alibaba, and it was amusing. Elon Musk said some of his usual quotes. His warnings about AI are to me salient though, even if sensationalistic.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.