Collaborating Authors


Cross-Platform Difference in Facebook and Text Messages Language Use: Illustrated by Depression Diagnosis Artificial Intelligence

How does language differ across one's Facebook status updates vs. one's text messages (SMS)? In this study, we show how Facebook and SMS use differs in psycho-linguistic characteristics and how these differences drive downstream analyses with an illustration of depression diagnosis. We use a sample of consenting participants who shared Facebook status updates, SMS data, and answered a standard psychological depression screener. We quantify domain differences using psychologically driven lexical methods and find that language on Facebook involves more personal concerns, experiences, and content features while the language in SMS contains more informal and style features. Next, we estimate depression from both text domains, using a depression model trained on Facebook data, and find a drop in accuracy when predicting self-reported depression assessments from the SMS-based depression estimates. Finally, we evaluate a simple domain adaption correction based on words driving the cross-platform differences and applied it to the SMS-derived depression estimates, resulting in significant improvement in prediction. Our work shows the Facebook vs. SMS difference in language use and suggests the necessity of cross-domain adaption for text-based predictions.

Technology Ethics in Action: Critical and Interdisciplinary Perspectives Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.

Twitter User Representation using Weakly Supervised Graph Embedding Artificial Intelligence

Social media platforms provide convenient means for users to participate in multiple online activities on various contents and create fast widespread interactions. However, this rapidly growing access has also increased the diverse information, and characterizing user types to understand people's lifestyle decisions shared in social media is challenging. In this paper, we propose a weakly supervised graph embedding based framework for understanding user types. We evaluate the user embedding learned using weak supervision over well-being related tweets from Twitter, focusing on 'Yoga', 'Keto diet'. Experiments on real-world datasets demonstrate that the proposed framework outperforms the baselines for detecting user types. Finally, we illustrate data analysis on different types of users (e.g., practitioner vs. promotional) from our dataset. While we focus on lifestyle-related tweets (i.e., yoga, keto), our method for constructing user representation readily generalizes to other domains.

The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.

Analysis of Twitter Users' Lifestyle Choices using Joint Embedding Model Artificial Intelligence

Multiview representation learning of data can help construct coherent and contextualized users' representations on social media. This paper suggests a joint embedding model, incorporating users' social and textual information to learn contextualized user representations used for understanding their lifestyle choices. We apply our model to tweets related to two lifestyle activities, `Yoga' and `Keto diet' and use it to analyze users' activity type and motivation. We explain the data collection and annotation process in detail and provide an in-depth analysis of users from different classes based on their Twitter content. Our experiments show that our model results in performance improvements in both domains.

Can Surveillance AI Make the Workplace Safe?


As the world recovers from the initial shock wave caused by the COVID-19 pandemic, businesses are preparing for their transitions back to their physical workplaces. In most cases, they are opening up gradually, with an unprecedented focus on keeping workers safe as they return. To protect employees' health and well-being, organizations must systematically reengineer their workspaces. This may include reconfiguring offices, rearranging desks, changing people's shifts to minimize crowding, and allowing people to work remotely long term. Then there are the purely medical measures, such as regular temperature checks, the provision of face masks and other personal protective equipment, and even onsite doctors.

Artificial Intelligence for Social Good: A Survey Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.

Alexa and Fitbit apps make the top 10 free apps list, suggesting they were popular gifts

Daily Mail - Science & tech

A new report suggests many people's stockings were stuffed with an Amazon Echo this holiday. Apple's App Store revealed that following Christmas Day, Amazon's Alexa took the top spot followed by YoutTube and Snapchat. Although Fitbit came in seventh, it was the second most popular hardware related app, suggesting many people may have also received it was gift this year. Apple released its weekly roundup of the most popular apps in its App Store and last week Disney reigned supreme, but just a day after Christmas, it was demoted to third by Amazon's Alexa app and YouTube. The report suggests that consumers had received an Amazon Echo for Christmas and needed the app to setup the device.

The Automated Copywriter: Algorithmic Rephrasing of Health-Related Advertisements to Improve their Performance Artificial Intelligence

Search advertising is one of the most commonly-used methods of advertising. Past work has shown that search advertising can be employed to improve health by eliciting positive behavioral change. However, writing effective advertisements requires expertise and (possible expensive) experimentation, both of which may not be available to public health authorities wishing to elicit such behavioral changes, especially when dealing with a public health crises such as epidemic outbreaks. Here we develop an algorithm which builds on past advertising data to train a sequence-to-sequence Deep Neural Network which "translates" advertisements into optimized ads that are more likely to be clicked. The network is trained using more than 114 thousands ads shown on Microsoft Advertising. We apply this translator to two health related domains: Medical Symptoms (MS) and Preventative Healthcare (PH) and measure the improvements in click-through rates (CTR). Our experiments show that the generated ads are predicted to have higher CTR in 81% of MS ads and 76% of PH ads. To understand the differences between the generated ads and the original ones we develop estimators for the affective attributes of the ads. We show that the generated ads contain more calls-to-action and that they reflect higher valence (36% increase) and higher arousal (87%) on a sample of 1000 ads. Finally, we run an advertising campaign where 10 random ads and their rephrased versions from each of the domains are run in parallel. We show an average improvement in CTR of 68% for the generated ads compared to the original ads. Our results demonstrate the ability to automatically optimize advertisement for the health domain. We believe that our work offers health authorities an improved ability to help nudge people towards healthier behaviors while saving the time and cost needed to optimize advertising campaigns.

The 2018 Survey: AI and the Future of Humans


"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.