Collaborating Authors


Conference on Reinforcement Learning and Decision Making


The 5th Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) 2022 took place at Brown University from 8-11 June. The programme included invited and contributed talks, workshops, and poster sessions. The goal of RLDM is to provide a platform for communication among all researchers interested in learning and decision making over time to achieve a goal. Over the last few decades, reinforcement learning and decision making have been the focus of an incredible wealth of research spanning a wide variety of fields including psychology, artificial intelligence, machine learning, operations research, control theory, neuroscience, economics and ethology. The interdisciplinary sharing of ideas has been key to many developments in the field, and the meeting is characterized by the multidisciplinarity of the presenters and attendees.

Research advances technology of AI assistance for anesthesiologists


A new study by researchers at MIT and Massachusetts General Hospital (MGH) suggests the day may be approaching when advanced artificial intelligence systems could assist anesthesiologists in the operating room. In a special edition of Artificial Intelligence in Medicine, the team of neuroscientists, engineers, and physicians demonstrated a machine learning algorithm for continuously automating dosing of the anesthetic drug propofol. Using an application of deep reinforcement learning, in which the software's neural networks simultaneously learned how its dosing choices maintain unconsciousness and how to critique the efficacy of its own actions, the algorithm outperformed more traditional software in sophisticated, physiology-based simulations of patients. It also closely matched the performance of real anesthesiologists when showing what it would do to maintain unconsciousness given recorded data from nine real surgeries. The algorithm's advances increase the feasibility for computers to maintain patient unconsciousness with no more drug than is needed, thereby freeing up anesthesiologists for all the other responsibilities they have in the operating room, including making sure patients remain immobile, experience no pain, remain physiologically stable, and receive adequate oxygen, say co-lead authors Gabe Schamberg and Marcus Badgeley.

Soft Actor-Critic with Inhibitory Networks for Faster Retraining Artificial Intelligence

Reusing previously trained models is critical in deep reinforcement learning to speed up training of new agents. However, it is unclear how to acquire new skills when objectives and constraints are in conflict with previously learned skills. Moreover, when retraining, there is an intrinsic conflict between exploiting what has already been learned and exploring new skills. In soft actor-critic (SAC) methods, a temperature parameter can be dynamically adjusted to weight the action entropy and balance the explore $\times$ exploit trade-off. However, controlling a single coefficient can be challenging within the context of retraining, even more so when goals are contradictory. In this work, inspired by neuroscience research, we propose a novel approach using inhibitory networks to allow separate and adaptive state value evaluations, as well as distinct automatic entropy tuning. Ultimately, our approach allows for controlling inhibition to handle conflict between exploiting less risky, acquired behaviors and exploring novel ones to overcome more challenging tasks. We validate our method through experiments in OpenAI Gym environments.

A Discourse on MetODS: Meta-Optimized Dynamical Synapses for Meta-Reinforcement Learning Artificial Intelligence

Recent meta-reinforcement learning work has emphasized the importance of mnemonic control for agents to quickly assimilate relevant experience in new contexts and suitably adapt their policy. However, what computational mechanisms support flexible behavioral adaptation from past experience remains an open question. Inspired by neuroscience, we propose MetODS (for Meta-Optimized Dynamical Synapses), a broadly applicable model of meta-reinforcement learning which leverages fast synaptic dynamics influenced by action-reward feedback. We develop a theoretical interpretation of MetODS as a model learning powerful control rules in the policy space and demonstrate empirically that robust reinforcement learning programs emerge spontaneously from them. We further propose a formalism which efficiently optimizes the meta-parameters governing MetODS synaptic processes. In multiple experiments and domains, MetODS outperforms or compares favorably with previous meta-reinforcement learning approaches. Our agents can perform one-shot learning, approaches optimal exploration/exploitation strategies, generalize navigation principles to unseen environments and demonstrate a strong ability to learn adaptive motor policies.

Deep Reinforcement Learning with Spiking Q-learning Artificial Intelligence

With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combing SNNs and deep reinforcement learning (RL). There are only a few existing SNN-based RL methods at present. Most of them either lack generalization ability or employ Artificial Neural Networks (ANNs) to estimate value function in training. The former needs to tune numerous hyper-parameters for each scenario, and the latter limits the application of different types of RL algorithm and ignores the large energy consumption in training. To develop a robust spike-based RL method, we draw inspiration from non-spiking interneurons found in insects and propose the deep spiking Q-network (DSQN), using the membrane voltage of non-spiking neurons as the representation of Q-value, which can directly learn robust policies from high-dimensional sensory inputs using end-to-end RL. Experiments conducted on 17 Atari games demonstrate the effectiveness of DSQN by outperforming the ANN-based deep Q-network (DQN) in most games. Moreover, the experimental results show superior learning stability and robustness to adversarial attacks of DSQN.

From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven Learning in Artificial Intelligence Tasks Artificial Intelligence

Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition. In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning as inspired by human cognitive development; meanwhile, it can bridge the existing gap between AI research and practical application scenarios, such as overfitting, poor generalization, limited training samples, high computational cost, etc. As a result, curiosity-driven learning (CDL) has become increasingly popular, where agents are self-motivated to learn novel knowledge. In this paper, we first present a comprehensive review on the psychological study of curiosity and summarize a unified framework for quantifying curiosity as well as its arousal mechanism. Based on the psychological principle, we further survey the literature of existing CDL methods in the fields of Reinforcement Learning, Recommendation, and Classification, where both advantages and disadvantages as well as future work are discussed. As a result, this work provides fruitful insights for future CDL research and yield possible directions for further improvement.

Prospective Learning: Back to the Future Artificial Intelligence

Research on both natural intelligence (NI) and artificial intelligence (AI) generally assumes that the future resembles the past: intelligent agents or systems (what we call 'intelligence') observe and act on the world, then use this experience to act on future experiences of the same kind. We call this 'retrospective learning'. For example, an intelligence may see a set of pictures of objects, along with their names, and learn to name them. A retrospective learning intelligence would merely be able to name more pictures of the same objects. We argue that this is not what true intelligence is about. In many real world problems, both NIs and AIs will have to learn for an uncertain future. Both must update their internal models to be useful for future tasks, such as naming fundamentally new objects and using these objects effectively in a new context or to achieve previously unencountered goals. This ability to learn for the future we call 'prospective learning'. We articulate four relevant factors that jointly define prospective learning. Continual learning enables intelligences to remember those aspects of the past which it believes will be most useful in the future. Prospective constraints (including biases and priors) facilitate the intelligence finding general solutions that will be applicable to future problems. Curiosity motivates taking actions that inform future decision making, including in previously unmet situations. Causal estimation enables learning the structure of relations that guide choosing actions for specific outcomes, even when the specific action-outcome contingencies have never been observed before. We argue that a paradigm shift from retrospective to prospective learning will enable the communities that study intelligence to unite and overcome existing bottlenecks to more effectively explain, augment, and engineer intelligences.

Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making Artificial Intelligence

In this paper, we contribute a multi-faceted study into Pavlovian signalling -- a process by which learned, temporally extended predictions made by one agent inform decision-making by another agent. Signalling is intimately connected to time and timing. In service of generating and receiving signals, humans and other animals are known to represent time, determine time since past events, predict the time until a future stimulus, and both recognize and generate patterns that unfold in time. We investigate how different temporal processes impact coordination and signalling between learning agents by introducing a partially observable decision-making domain we call the Frost Hollow. In this domain, a prediction learning agent and a reinforcement learning agent are coupled into a two-part decision-making system that works to acquire sparse reward while avoiding time-conditional hazards. We evaluate two domain variations: machine agents interacting in a seven-state linear walk, and human-machine interaction in a virtual-reality environment. Our results showcase the speed of learning for Pavlovian signalling, the impact that different temporal representations do (and do not) have on agent-agent coordination, and how temporal aliasing impacts agent-agent and human-agent interactions differently. As a main contribution, we establish Pavlovian signalling as a natural bridge between fixed signalling paradigms and fully adaptive communication learning between two agents. We further show how to computationally build this adaptive signalling process out of a fixed signalling process, characterized by fast continual prediction learning and minimal constraints on the nature of the agent receiving signals. Our results therefore suggest an actionable, constructivist path towards communication learning between reinforcement learning agents.

Deep Reinforcement Learning Artificial Intelligence

Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.

Learning Control Policies for Fall prevention and safety in bipedal locomotion Artificial Intelligence

The ability to recover from an unexpected external perturbation is a fundamental motor skill in bipedal locomotion. An effective response includes the ability to not just recover balance and maintain stability but also to fall in a safe manner when balance recovery is physically infeasible. For robots associated with bipedal locomotion, such as humanoid robots and assistive robotic devices that aid humans in walking, designing controllers which can provide this stability and safety can prevent damage to robots or prevent injury related medical costs. This is a challenging task because it involves generating highly dynamic motion for a high-dimensional, non-linear and under-actuated system with contacts. Despite prior advancements in using model-based and optimization methods, challenges such as requirement of extensive domain knowledge, relatively large computational time and limited robustness to changes in dynamics still make this an open problem. In this thesis, to address these issues we develop learning-based algorithms capable of synthesizing push recovery control policies for two different kinds of robots : Humanoid robots and assistive robotic devices that assist in bipedal locomotion. Our work can be branched into two closely related directions : 1) Learning safe falling and fall prevention strategies for humanoid robots and 2) Learning fall prevention strategies for humans using a robotic assistive devices. To achieve this, we introduce a set of Deep Reinforcement Learning (DRL) algorithms to learn control policies that improve safety while using these robots.