Goto

Collaborating Authors

Results


Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up

arXiv.org Artificial Intelligence

A large body of compelling evidence has been accumulated demonstrating that embodiment - the agent's physical setup, including its shape, materials, sensors and actuators - is constitutive for any form of cognition and as a consequence, models of cognition need to be embodied. In contrast to methods from empirical sciences to study cognition, robots can be freely manipulated and virtually all key variables of their embodiment and control programs can be systematically varied. As such, they provide an extremely powerful tool of investigation. We present a robotic bottom-up or developmental approach, focusing on three stages: (a) low-level behaviors like walking and reflexes, (b) learning regularities in sensorimotor spaces, and (c) human-like cognition. We also show that robotic based research is not only a productive path to deepening our understanding of cognition, but that robots can strongly benefit from human-like cognition in order to become more autonomous, robust, resilient, and safe.


Towards a Quantum-Like Cognitive Architecture for Decision-Making

arXiv.org Artificial Intelligence

We propose an alternative and unifying framework for decision-making that, by using quantum mechanics, provides more generalised cognitive and decision models with the ability to represent more information than classical models. This framework can accommodate and predict several cognitive biases reported in Lieder & Griffiths without heavy reliance on heuristics nor on assumptions of the computational resources of the mind. Expected utility theory and classical probabilities tell us what people should do if employing traditionally rational thought, but do not tell us what people do in reality (Machina, 2009). Under this principle, L&G propose an architecture for cognition that can serve as an intermediary layer between Neuroscience and Computation. Whilst instances where large expenditures of cognitive resources occur are theoretically alluded to, the model primarily assumes a preference for fast, heuristic-based processing.


Intelligent architectures for robotics: The merging of cognition and emotion

arXiv.org Artificial Intelligence

What is the place of emotion in intelligent robots? In the past two decades, researchers have advocated for the inclusion of some emotion-related components in the general information processing architecture of autonomous agents, say, for better communication with humans, or to instill a sense of urgency to action. The framework advanced here goes beyond these approaches and proposes that emotion and motivation need to be integrated with all aspects of the architecture. Thus, cognitive-emotional integration is a key design principle. Emotion is not an "add on" that endows a robot with "feelings" (for instance, reporting or expressing its internal state). It allows the significance of percepts, plans, and actions to be an integral part of all its computations. It is hypothesized that a sophisticated artificial intelligence cannot be built from separate cognitive and emotional modules. A hypothetical test inspired by the Turing test, called the Dolores test, is proposed to test this assertion.


Solving Tree Problems with Category Theory

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has long pursued models, theories, and techniques to imbue machines with human-like general intelligence. Yet even the currently predominant data-driven approaches in AI seem to be lacking humans' unique ability to solve wide ranges of problems. This situation begs the question of the existence of principles that underlie general problem-solving capabilities. We approach this question through the mathematical formulation of analogies across different problems and solutions. We focus in particular on problems that could be represented as tree-like structures. Most importantly, we adopt a category-theoretic approach in formalising tree problems as categories, and in proving the existence of equivalences across apparently unrelated problem domains. We prove the existence of a functor between the category of tree problems and the category of solutions. We also provide a weaker version of the functor by quantifying equivalences of problem categories using a metric on tree problems.


Research on the Brain-inspired Cross-media Neural Cognitive Computing Framework

arXiv.org Artificial Intelligence

To address modeling problems of brain-inspired intelligence, this thesis is focused on researching in the semantic-oriented framework design for image, audio, language and video. The Multimedia Neural Cognitive Computing (MNCC) model was designed based on the nervous mechanism and cognitive architecture. Furthermore, the semantic-oriented hierarchical Cross-media Neural Cognitive Computing (CNCC) framework was proposed based on MNCC, and formal description and analysis for CNCC was given. It would effectively improve the performance of semantic processing for multimedia information, and has far-reaching significance for exploration and realization brain-inspired computing.


A Review of 40 Years of Cognitive Architecture Research: Core Cognitive Abilities and Practical Applications

arXiv.org Artificial Intelligence

In this paper we present a broad overview of the last 40 years of research on cognitive architectures. Although the number of existing architectures is nearing several hundred, most of the existing surveys do not reflect this growth and focus on a handful of well-established architectures. Thus, in this survey we wanted to shift the focus towards a more inclusive and high-level overview of the research on cognitive architectures. Our final set of 84 architectures includes 49 that are still actively developed, and borrow from a diverse set of disciplines, spanning areas from psychoanalysis to neuroscience. To keep the length of this paper within reasonable limits we discuss only the core cognitive abilities, such as perception, attention mechanisms, action selection, memory, learning and reasoning. In order to assess the breadth of practical applications of cognitive architectures we gathered information on over 900 practical projects implemented using the cognitive architectures in our list. We use various visualization techniques to highlight overall trends in the development of the field. In addition to summarizing the current state-of-the-art in the cognitive architecture research, this survey describes a variety of methods and ideas that have been tried and their relative success in modeling human cognitive abilities, as well as which aspects of cognitive behavior need more research with respect to their mechanistic counterparts and thus can further inform how cognitive science might progress.



A Standard Model of the Mind: Toward a Common Computational Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics

AI Magazine

The proposed standard model began as an initial consensus at the 2013 AAAI Fall Symposium on Integrated Cognition, but is extended here through a synthesis across three existing cognitive architectures: ACT-R, Sigma, and Soar. The resulting standard model spans key aspects of structure and processing, memory and content, learning, and perception and motor, and highlights loci of architectural agreement as well as disagreement with the consensus while identifying potential areas of remaining incompleteness. The hope is that this work will provide an important step toward engaging the broader community in further development of the standard model of the mind.


DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self

arXiv.org Artificial Intelligence

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the-art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.


Introduction to Computational Neuroscience

AITopics Original Links

This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission.