Collaborating Authors


Technology Ethics in Action: Critical and Interdisciplinary Perspectives Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.

Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Randomized Classifiers vs Human Decision-Makers: Trustworthy AI May Have to Act Randomly and Society Seems to Accept This Artificial Intelligence

As \emph{artificial intelligence} (AI) systems are increasingly involved in decisions affecting our lives, ensuring that automated decision-making is fair and ethical has become a top priority. Intuitively, we feel that akin to human decisions, judgments of artificial agents should necessarily be grounded in some moral principles. Yet a decision-maker (whether human or artificial) can only make truly ethical (based on any ethical theory) and fair (according to any notion of fairness) decisions if full information on all the relevant factors on which the decision is based are available at the time of decision-making. This raises two problems: (1) In settings, where we rely on AI systems that are using classifiers obtained with supervised learning, some induction/generalization is present and some relevant attributes may not be present even during learning. (2) Modeling such decisions as games reveals that any -- however ethical -- pure strategy is inevitably susceptible to exploitation. Moreover, in many games, a Nash Equilibrium can only be obtained by using mixed strategies, i.e., to achieve mathematically optimal outcomes, decisions must be randomized. In this paper, we argue that in supervised learning settings, there exist random classifiers that perform at least as well as deterministic classifiers, and may hence be the optimal choice in many circumstances. We support our theoretical results with an empirical study indicating a positive societal attitude towards randomized artificial decision-makers, and discuss some policy and implementation issues related to the use of random classifiers that relate to and are relevant for current AI policy and standardization initiatives.

The State of AI Ethics Report (Volume 5) Artificial Intelligence

This report from the Montreal AI Ethics Institute covers the most salient progress in research and reporting over the second quarter of 2021 in the field of AI ethics with a special emphasis on "Environment and AI", "Creativity and AI", and "Geopolitics and AI." The report also features an exclusive piece titled "Critical Race Quantum Computer" that applies ideas from quantum physics to explain the complexities of human characteristics and how they can and should shape our interactions with each other. The report also features special contributions on the subject of pedagogy in AI ethics, sociology and AI ethics, and organizational challenges to implementing AI ethics in practice. Given MAIEI's mission to highlight scholars from around the world working on AI ethics issues, the report also features two spotlights sharing the work of scholars operating in Singapore and Mexico helping to shape policy measures as they relate to the responsible use of technology. The report also has an extensive section covering the gamut of issues when it comes to the societal impacts of AI covering areas of bias, privacy, transparency, accountability, fairness, interpretability, disinformation, policymaking, law, regulations, and moral philosophy.

The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.

Confronting Structural Inequities in AI for Education Artificial Intelligence

Educational technologies, and the systems of schooling in which they are deployed, enact particular ideologies about what is important to know and how learners should learn. As artificial intelligence technologies -- in education and beyond -- have led to inequitable outcomes for marginalized communities, various approaches have been developed to evaluate and mitigate AI systems' disparate impact. However, we argue in this paper that the dominant paradigm of evaluating fairness on the basis of performance disparities in AI models is inadequate for confronting the structural inequities that educational AI systems (re)produce. We draw on a lens of structural injustice informed by critical theory and Black feminist scholarship to critically interrogate several widely-studied and widely-adopted categories of educational AI systems and demonstrate how educational AI technologies are bound up in and reproduce historical legacies of structural injustice and inequity, regardless of the parity of their models' performance. We close with alternative visions for a more equitable future for educational AI research.

The AI Index 2021 Annual Report Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.

Patterns, predictions, and actions: A story about machine learning Machine Learning

This graduate textbook on machine learning tells a story of how patterns in data support predictions and consequential actions. Starting with the foundations of decision making, we cover representation, optimization, and generalization as the constituents of supervised learning. A chapter on datasets as benchmarks examines their histories and scientific bases. Self-contained introductions to causality, the practice of causal inference, sequential decision making, and reinforcement learning equip the reader with concepts and tools to reason about actions and their consequences. Throughout, the text discusses historical context and societal impact. We invite readers from all backgrounds; some experience with probability, calculus, and linear algebra suffices.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.