Goto

Collaborating Authors

Results


Computing for Ocean Environments: Bio-Inspired Underwater Devices & Swarming Algorithms for Robotic Vehicles

#artificialintelligence

Assistant Professor Wim van Rees and his team have developed simulations of self-propelled undulatory swimmers to better understand how fish-like deformable fins could improve propulsion in underwater devices, seen here in a top-down view. MIT ocean and mechanical engineers are using advances in scientific computing to address the ocean's many challenges, and seize its opportunities. There are few environments as unforgiving as the ocean. Its unpredictable weather patterns and limitations in terms of communications have left large swaths of the ocean unexplored and shrouded in mystery. "The ocean is a fascinating environment with a number of current challenges like microplastics, algae blooms, coral bleaching, and rising temperatures," says Wim van Rees, the ABS Career Development Professor at MIT. "At the same time, the ocean holds countless opportunities -- from aquaculture to energy harvesting and exploring the many ocean creatures we haven't discovered yet."


A Monotone Approximate Dynamic Programming Approach for the Stochastic Scheduling, Allocation, and Inventory Replenishment Problem: Applications to Drone and Electric Vehicle Battery Swap Stations

arXiv.org Artificial Intelligence

There is a growing interest in using electric vehicles (EVs) and drones for many applications. However, battery-oriented issues, including range anxiety and battery degradation, impede adoption. Battery swap stations are one alternative to reduce these concerns that allow the swap of depleted for full batteries in minutes. We consider the problem of deriving actions at a battery swap station when explicitly considering the uncertain arrival of swap demand, battery degradation, and replacement. We model the operations at a battery swap station using a finite horizon Markov Decision Process model for the stochastic scheduling, allocation, and inventory replenishment problem (SAIRP), which determines when and how many batteries are charged, discharged, and replaced over time. We present theoretical proofs for the monotonicity of the value function and monotone structure of an optimal policy for special SAIRP cases. Due to the curses of dimensionality, we develop a new monotone approximate dynamic programming (ADP) method, which intelligently initializes a value function approximation using regression. In computational tests, we demonstrate the superior performance of the new regression-based monotone ADP method as compared to exact methods and other monotone ADP methods. Further, with the tests, we deduce policy insights for drone swap stations.


Pervasive AI for IoT Applications: Resource-efficient Distributed Artificial Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services, spanning from recommendation systems to robotics control and military surveillance. This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams. Designing accurate models using such data streams, to predict future insights and revolutionize the decision-taking process, inaugurates pervasive systems as a worthy paradigm for a better quality-of-life. The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems from mainly data collection to executing distributed computations with a promising alternative to centralized learning, presenting various challenges. In this context, a wise cooperation and resource scheduling should be envisaged among IoT devices (e.g., smartphones, smart vehicles) and infrastructure (e.g. edge nodes, and base stations) to avoid communication and computation overheads and ensure maximum performance. In this paper, we conduct a comprehensive survey of the recent techniques developed to overcome these resource challenges in pervasive AI systems. Specifically, we first present an overview of the pervasive computing, its architecture, and its intersection with artificial intelligence. We then review the background, applications and performance metrics of AI, particularly Deep Learning (DL) and online learning, running in a ubiquitous system. Next, we provide a deep literature review of communication-efficient techniques, from both algorithmic and system perspectives, of distributed inference, training and online learning tasks across the combination of IoT devices, edge devices and cloud servers. Finally, we discuss our future vision and research challenges.


5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

arXiv.org Artificial Intelligence

Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.


Scientists use reinforcement learning to train quantum algorithm

#artificialintelligence

Recent advancements in quantum computing have driven the scientific community's quest to solve a certain class of complex problems for which quantum computers would be better suited than traditional supercomputers. To improve the efficiency with which quantum computers can solve these problems, scientists are investigating the use of artificial intelligence approaches. In a new study, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a new algorithm based on reinforcement learning to find the optimal parameters for the Quantum Approximate Optimization Algorithm (QAOA), which allows a quantum computer to solve certain combinatorial problems such as those that arise in materials design, chemistry and wireless communications. "It's a bit like having a self-driving car in traffic; the algorithm can detect when it needs to make adjustments in the'dials' it uses to do the computation." "Combinatorial optimization problems are those for which the solution space gets exponentially larger as you expand the number of decision variables," said Argonne computer scientist Prasanna Balaprakash.


Swarm Intelligence for Next-Generation Wireless Networks: Recent Advances and Applications

arXiv.org Artificial Intelligence

Due to the proliferation of smart devices and emerging applications, many next-generation technologies have been paid for the development of wireless networks. Even though commercial 5G has just been widely deployed in some countries, there have been initial efforts from academia and industrial communities for 6G systems. In such a network, a very large number of devices and applications are emerged, along with heterogeneity of technologies, architectures, mobile data, etc., and optimizing such a network is of utmost importance. Besides convex optimization and game theory, swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks. As a new subdivision of artificial intelligence, SI is inspired by the collective behaviors of societies of biological species. In SI, simple agents with limited capabilities would achieve intelligent strategies for high-dimensional and challenging problems, so it has recently found many applications in next-generation wireless networks (NGN). However, researchers may not be completely aware of the full potential of SI techniques. In this work, our primary focus will be the integration of these two domains: NGN and SI. Firstly, we provide an overview of SI techniques from fundamental concepts to well-known optimizers. Secondly, we review the applications of SI to settle emerging issues in NGN, including spectrum management and resource allocation, wireless caching and edge computing, network security, and several other miscellaneous issues. Finally, we highlight open challenges and issues in the literature, and introduce some interesting directions for future research.


Learning Model Predictive Control for Competitive Autonomous Racing

arXiv.org Machine Learning

The goal of this thesis is to design a learning model predictive controller (LMPC) that allows multiple agents to race competitively on a predefined race track in real-time. This thesis addresses two major shortcomings in the already existing single-agent formulation. Previously, the agent determines a locally optimal trajectory but does not explore the state space, which may be necessary for overtaking maneuvers. Additionally, obstacle avoidance for LMPC has been achieved in the past by using a non-convex terminal set, which increases the complexity for determining a solution to the optimization problem. The proposed algorithm for multi-agent racing explores the state space by executing the LMPC for multiple different initializations, which yields a richer terminal safe set. Furthermore, a new method for selecting states in the terminal set is developed, which keeps the convexity for the terminal safe set and allows for taking suboptimal states.


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.


Intelligent Processing in Vehicular Ad hoc Networks: a Survey

arXiv.org Artificial Intelligence

The intelligent Processing technique is more and more attractive to researchers due to its ability to deal with key problems in Vehicular Ad hoc networks. However, several problems in applying intelligent processing technologies in VANETs remain open. The existing applications are comprehensively reviewed and discussed, and classified into different categories in this paper. Their strategies, advantages/disadvantages, and performances are elaborated. By generalizing different tactics in various applications related to different scenarios of VANETs and evaluating their performances, several promising directions for future research have been suggested.


Approximate Dynamic Programming for Planning a Ride-Sharing System using Autonomous Fleets of Electric Vehicles

arXiv.org Artificial Intelligence

Within a decade, almost every major auto company, along with fleet operators such as Uber, have announced plans to put autonomous vehicles on the road. At the same time, electric vehicles are quickly emerging as a next-generation technology that is cost effective, in addition to offering the benefits of reducing the carbon footprint. The combination of a centrally managed fleet of driverless vehicles, along with the operating characteristics of electric vehicles, is creating a transformative new technology that offers significant cost savings with high service levels. This problem involves a dispatch problem for assigning riders to cars, a planning problem for deciding on the fleet size, and a surge pricing problem for deciding on the price per trip. In this work, we propose to use approximate dynamic programming to develop high-quality operational dispatch strategies to determine which car (given the battery level) is best for a particular trip (considering its length and destination), when a car should be recharged, and when it should be re-positioned to a different zone which offers a higher density of trips. We then discuss surge pricing using an adaptive learning approach to decide on the price for each trip. Finally, we discuss the fleet size problem which depends on the previous two problems.