Goto

Collaborating Authors

Results


Google Has a Plan to Stop Its New AI From Being Dirty and Rude

WIRED

Silicon Valley CEOs usually focus on the positives when announcing their company's next big thing. In 2007, Apple's Steve Jobs lauded the first iPhone's "revolutionary user interface" and "breakthrough software." Google CEO Sundar Pichai took a different tack at his company's annual conference Wednesday when he announced a beta test of Google's "most advanced conversational AI yet." Pichai said the chatbot, known as LaMDA 2, can converse on any topic and had performed well in tests with Google employees. He announced a forthcoming app called AI Test Kitchen that will make the bot available for outsiders to try.


Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplication

Communications of the ACM

Large-scale machine learning and data mining applications require computer systems to perform massive matrix-vector and matrix-matrix multiplication operations that need to be parallelized across multiple nodes. The presence of straggling nodes--computing nodes that unpredictably slow down or fail--is a major bottleneck in such distributed computations. Ideal load balancing strategies that dynamically allocate more tasks to faster nodes require knowledge or monitoring of node speeds as well as the ability to quickly move data. Recently proposed fixed-rate erasure coding strategies can handle unpredictable node slowdown, but they ignore partial work done by straggling nodes, thus resulting in a lot of redundant computation. We propose a rateless fountain coding strategy that achieves the best of both worlds--we prove that its latency is asymptotically equal to ideal load balancing, and it performs asymptotically zero redundant computations. Our idea is to create linear combinations of the m rows of the matrix and assign these encoded rows to different worker nodes. The original matrix-vector product can be decoded as soon as slightly more than m row-vector products are collectively finished by the nodes. Evaluation on parallel and distributed computing yields as much as three times speedup over uncoded schemes. Matrix-vector multiplications form the core of a plethora of scientific computing and machine learning applications that include solving partial differential equations, forward and back propagation in neural networks, computing the PageRank of graphs, etcetera. In the age of Big Data, most of these applications involve multiplying extremely large matrices and vectors and the computations cannot be performed efficiently on a single machine. This has motivated the development of several algorithms that seek to speed up matrix-vector multiplication by distributing the computation across multiple computing nodes.



Technology Ethics in Action: Critical and Interdisciplinary Perspectives

arXiv.org Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.


Bayesian Optimization For Multi-Objective Mixed-Variable Problems

arXiv.org Artificial Intelligence

Optimizing multiple, non-preferential objectives for mixed-variable, expensive black-box problems is important in many areas of engineering and science. The expensive, noisy black-box nature of these problems makes them ideal candidates for Bayesian optimization (BO). Mixed-variable and multi-objective problems, however, are a challenge due to the BO's underlying smooth Gaussian process surrogate model. Current multi-objective BO algorithms cannot deal with mixed-variable problems. We present MixMOBO, the first mixed variable multi-objective Bayesian optimization framework for such problems. Using a genetic algorithm to sample the surrogate surface, optimal Pareto-fronts for multi-objective, mixed-variable design spaces can be found efficiently while ensuring diverse solutions. The method is sufficiently flexible to incorporate many different kernels and acquisition functions, including those that were developed for mixed-variable or multi-objective problems by other authors. We also present HedgeMO, a modified Hedge strategy that uses a portfolio of acquisition functions in multi-objective problems. We present a new acquisition function SMC. We show that MixMOBO performs well against other mixed-variable algorithms on synthetic problems. We apply MixMOBO to the real-world design of an architected material and show that our optimal design, which was experimentally fabricated and validated, has a normalized strain energy density $10^4$ times greater than existing structures.


Cooperative Multi-Agent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control

arXiv.org Artificial Intelligence

CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a large area while minimize overlapping and shadow areas for a reliable surveillance system. However, the operation of UAVs is subject to high uncertainty, necessitating autonomous recovery systems. This work develops a multi-agent deep reinforcement learning-based management scheme for reliable industry surveillance in smart city applications. The core idea this paper employs is autonomously replenishing the UAV's deficient network requirements with communications. Via intensive simulations, our proposed algorithm outperforms the state-of-the-art algorithms in terms of surveillance coverage, user support capability, and computational costs.


Digital Twin: From Concept to Practice

arXiv.org Artificial Intelligence

Recent technological developments and advances in Artificial Intelligence (AI) have enabled sophisticated capabilities to be a part of Digital Twin (DT), virtually making it possible to introduce automation into all aspects of work processes. Given these possibilities that DT can offer, practitioners are facing increasingly difficult decisions regarding what capabilities to select while deploying a DT in practice. The lack of research in this field has not helped either. It has resulted in the rebranding and reuse of emerging technological capabilities like prediction, simulation, AI, and Machine Learning (ML) as necessary constituents of DT. Inappropriate selection of capabilities in a DT can result in missed opportunities, strategic misalignments, inflated expectations, and risk of it being rejected as just hype by the practitioners. To alleviate this challenge, this paper proposes the digitalization framework, designed and developed by following a Design Science Research (DSR) methodology over a period of 18 months. The framework can help practitioners select an appropriate level of sophistication in a DT by weighing the pros and cons for each level, deciding evaluation criteria for the digital twin system, and assessing the implications of the selected DT on the organizational processes and strategies, and value creation. Three real-life case studies illustrate the application and usefulness of the framework.


Artificial Intelligence Upskills Software via Mathematics - ASME

#artificialintelligence

Fusing artificial intelligence with mathematical optimization will dramatically increase the "brainpower" for the task at hand, whether it's optimizing flight patterns or bringing energy and food to underserved areas. That's the word from the academic researchers who are part of a new interdisciplinary institute that aims to integrate the two fields. The National AI Institute for Advances in Optimization (AI4OPT) is led by a multidisciplinary team from six U.S. universities, including computer science and civil, environmental, electrical, and computer engineering professors. The combined methods will foster no less than a "paradigm shift" in optimization, said Pascal Van Hentenryck, professor of industrial and systems engineering at Georgia Tech and institute lead. According to Hentenryck, tackling problems at the scale and complexity faced by society today requires a fusion of optimization and machine learning, with the two technologies working hand-in-hand.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


14 tech luminaries we lost in 2021

#artificialintelligence

In 1961, a young Clive Sinclair was developing and selling pocket calculators, digital wristwatches, and mail-order radio kits through his own company, Sinclair Radionics. In 1975, he founded the company that would become Sinclair Research and began development of the electronics he would best be known for. The Sinclair ZX80 personal computer debuted in 1980. True to his radio-building background, Sinclair marketed the computer in both kit form for £80 ($108) or preassembled for £100 ($135). It was one of the first computers available at that price point, especially compared to the likes of the Apple II Plus, released a year earlier for $1,195.