Collaborating Authors


ELEXIS from Α to Ω: Outcomes, Sustainability & Afterlife of a new European Lexicographic Infrastructure, Firenze 2022


The ELEXIS showcase event invites representatives of institutions that have become observers, as well as people from the industry, operating in fields such as Language Technology, Machine Translation, language learning, Dictionary Publishing, etc.

Fairwords claims to prevent workplace harassment with AI, but the reality is more complicated


Did you miss a session at the Data Summit? Harassment in the workplace affects employees of all backgrounds, genders, sexualities, and ethnicities -- but disproportionately those in under-represented groups. A 2018 survey by Stop Street Harassment showed that 81% of women have been harassed in their lifetime. And according to a UCLA School of Law study, half of LGBTQ workers have faced job discrimination at some point in their careers. Work-from-home arrangements during the pandemic haven't slowed or reversed the trend -- in fact, they've accelerated it.

Technology Ethics in Action: Critical and Interdisciplinary Perspectives Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.

Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher Artificial Intelligence

Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.

On the Opportunities and Risks of Foundation Models Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Artificial Intelligence is taking over job hiring, but can it be racist?


Since graduating from a US university four years ago, Kevin Carballo has lost count of the number of times he has applied for a job only to receive a swift, automated rejection email - sometimes just hours after applying. Like many job seekers around the world, Carballo's applications are increasingly being screened by algorithms built to automatically flag attractive applicants to hiring managers. "There's no way to apply for a job these days without being analyzed by some sort of automated system," said Carballo, 27, who is Latino and the first member of his family to go to university. "It feels like shooting in the dark while being blindfolded - there's just no way for me to tell my full story when a machine is assessing me," Carballo, who hoped to get work experience at a law firm before applying to law school, told the Thomson Reuters Foundation by phone. From Artificial Intelligence (AI) programs that assess an applicant's facial expressions during a video interview, to resume screening platforms predicting job performance, the AI recruitment industry is valued at more than $500 million.

The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.

Artificial Intelligence and Ethics


On March 18, 2018, at around 10 p.m., Elaine Herzberg was wheeling her bicycle across a street in Tempe, Arizona, when she was struck and killed by a self-driving car. Although there was a human operator behind the wheel, an autonomous system--artificial intelligence--was in full control. This incident, like others involving interactions between people and AI technologies, raises a host of ethical and proto-legal questions. What moral obligations did the system's programmers have to prevent their creation from taking a human life? And who was responsible for Herzberg's death? "Artificial intelligence" refers to systems that can be designed to take cues from their environment and, based on those inputs, proceed to solve problems, assess risks, make predictions, and take actions. In the era predating powerful computers and big data, such systems were programmed by humans and followed rules of human invention, but advances in technology have led to the development of new approaches.