Collaborating Authors


A Logic-Based Explanation Generation Framework for Classical and Hybrid Planning Problems

Journal of Artificial Intelligence Research

In human-aware planning systems, a planning agent might need to explain its plan to a human user when that plan appears to be non-feasible or sub-optimal. A popular approach, called model reconciliation, has been proposed as a way to bring the model of the human user closer to the agent’s model. To do so, the agent provides an explanation that can be used to update the model of human such that the agent’s plan is feasible or optimal to the human user. Existing approaches to solve this problem have been based on automated planning methods and have been limited to classical planning problems only. In this paper, we approach the model reconciliation problem from a different perspective, that of knowledge representation and reasoning, and demonstrate that our approach can be applied not only to classical planning problems but also hybrid systems planning problems with durative actions and events/processes. In particular, we propose a logic-based framework for explanation generation, where given a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the updated KBh also entails q. More specifically, we make the following contributions in this paper: (1) We formally define the notion of logic-based explanations in the context of model reconciliation problems; (2) We introduce a number of cost functions that can be used to reflect preferences between explanations; (3) We present algorithms to compute explanations for both classical planning and hybrid systems planning problems; and (4) We empirically evaluate their performance on such problems. Our empirical results demonstrate that, on classical planning problems, our approach is faster than the state of the art when the explanations are long or when the size of the knowledge base is small (e.g., the plans to be explained are short). They also demonstrate that our approach is efficient for hybrid systems planning problems. Finally, we evaluate the real-world efficacy of explanations generated by our algorithms through a controlled human user study, where we develop a proof-of-concept visualization system and use it as a medium for explanation communication.

Answer Set Planning: A Survey Artificial Intelligence

Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans, i.e., solutions to planning problems, that transform a given state of the world to another state. The development of efficient and scalable answer set solvers has provided a significant boost to the development of ASP-based planning systems. This paper surveys the progress made during the last two and a half decades in the area of answer set planning, from its foundations to its use in challenging planning domains. The survey explores the advantages and disadvantages of answer set planning. It also discusses typical applications of answer set planning and presents a set of challenges for future research.

Augmented Business Process Management Systems: A Research Manifesto Artificial Intelligence

These opportunities require a significant shift in the way the BPMS operates and interacts with its operators(both human and digital agents). While traditional BPMSs encode pre-defined flows and rules, an ABPMS is able to reason about the current state of the process(or across several processes) to determine a course of action that improves the performance of the process. To fully exploit this capability, the ABPMS needs a degree of autonomy. Naturally, this autonomy needs to be framed by operational assumptions, goals, and environmental constraints. Also, ABPMSs need to engage conversationally with human agents, they need to explain their actions, and they need to recommend adaptations or improvements in the way the process is performed. This manifesto outlined a number of research challenges that need to be overcome to realize systems that exhibit these characteristics.

A Research Agenda for AI Planning in the Field of Flexible Production Systems Artificial Intelligence

Manufacturing companies face challenges when it comes to quickly adapting their production control to fluctuating demands or changing requirements. Control approaches that encapsulate production functions as services have shown to be promising in order to increase the flexibility of Cyber-Physical Production Systems. But an existing challenge of such approaches is finding a production plan based on provided functionalities for a demanded product, especially when there is no direct (i.e., syntactic) match between demanded and provided functions. While there is a variety of approaches to production planning, flexible production poses specific requirements that are not covered by existing research. In this contribution, we first capture these requirements for flexible production environments. Afterwards, an overview of current Artificial Intelligence approaches that can be utilized in order to overcome the aforementioned challenges is given. For this purpose, we focus on planning algorithms, but also consider models of production systems that can act as inputs to these algorithms. Approaches from both symbolic AI planning as well as approaches based on Machine Learning are discussed and eventually compared against the requirements. Based on this comparison, a research agenda is derived.

Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation Artificial Intelligence

Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: 1) how to define a quantitative land-use configuration? 2) how to automate configuration planning? 3) how to evaluate the quality of a generated configuration? In this paper, we systematically address the three challenges. Specifically, 1) We define a land-use configuration as a longitude-latitude-channel tensor. 2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. 3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.

Ultimate Goal Setting and Achieving - Medea Tech


Ultimate Goal Setting and Achieving is the course for you if you have ever looked at someone else and thought "I want to be like them!" Sometimes when you try to be like that person, you might feel upset or even angry because despite all of your hard work it seems like you are getting nowhere, and everyone else is doing better than you. That's because hard work alone is useless. You need direction and purpose. Think of a car race. It doesn't matter how fast the car is.

Online Grounding of PDDL Domains by Acting and Sensing in Unknown Environments Artificial Intelligence

To effectively use an abstract (PDDL) planning domain to achieve goals in an unknown environment, an agent must instantiate such a domain with the objects of the environment and their properties. If the agent has an egocentric and partial view of the environment, it needs to act, sense, and abstract the perceived data in the planning domain. Furthermore, the agent needs to compile the plans computed by a symbolic planner into low level actions executable by its actuators. This paper proposes a framework that aims to accomplish the aforementioned perspective and allows an agent to perform different tasks. For this purpose, we integrate machine learning models to abstract the sensory data, symbolic planning for goal achievement and path planning for navigation. We evaluate the proposed method in accurate simulated environments, where the sensors are RGB-D on-board camera, GPS and compass.

Operations for Autonomous Spacecraft Artificial Intelligence

Onboard autonomy technologies such as planning and scheduling, identification of scientific targets, and content-based data summarization, will lead to exciting new space science missions. However, the challenge of operating missions with such onboard autonomous capabilities has not been studied to a level of detail sufficient for consideration in mission concepts. These autonomy capabilities will require changes to current operations processes, practices, and tools. We have developed a case study to assess the changes needed to enable operators and scientists to operate an autonomous spacecraft by facilitating a common model between the ground personnel and the onboard algorithms. We assess the new operations tools and workflows necessary to enable operators and scientists to convey their desired intent to the spacecraft, and to be able to reconstruct and explain the decisions made onboard and the state of the spacecraft. Mock-ups of these tools were used in a user study to understand the effectiveness of the processes and tools in enabling a shared framework of understanding, and in the ability of the operators and scientists to effectively achieve mission science objectives.

Goal Setting : Ultimate Story Based Course


Goal setting seems like a no brainer to achieve any Great Goal! Yet it is seldom effectively practiced. The Key is not about learning complex concepts but rather developing DEEP understanding about simple yet effective methods. What better way to learn this other than through a story? In this 6 Episode series, let us learn various aspects of Goal setting in an extremely effective manner by walking along with Billy as he learns powerful techniques that truly revolutionize his life.