Goto

Collaborating Authors

Results


How to Define and Execute Your Data and AI Strategy · Harvard Data Science Review

#artificialintelligence

Over the past decade, many organizations have come to recognize that their future success will depend on data and AI (artificial intelligence) capabilities. Expectations are high and companies are heavily investing in the area. However, our experience advising organizations in diverse industries suggests that many have also become disillusioned in their journey to create companywide, data-driven business transformation. This article discusses some of the common pitfalls in the implementation of data and AI strategies and gives recommendations for business leaders on how to successfully include data and AI in their business processes. These recommendations address the core enablers for data and AI capabilities, from setting the ambition level to hiring the right talent and defining the AI organization and operating model. Many companies are currently investing in data and artificial intelligence (AI). Since the terminology varies, the activities may be called AI, advanced analytics, data science, or machine learning, but the goals are the same: to increase revenues and efficiency in current business and to develop new data-enabled offerings. In addition, many companies see an increasing responsibility to contribute their AI expertise toward humanitarian and social matters. It is well understood that to stay competitive in the digital economy, the company's internal processes and products need to be smart--and smartness comes from data and AI. Over the past 4 years, our company DAIN Studios has been involved in more than 40 Data and AI initiatives in different companies and industries in Finland, Germany, Austria, Switzerland, and the Netherlands. Our clients are typically large, publicly listed companies.