Collaborating Authors


Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Application of Fuzzy Set Theory to Setup Planning


Computer-aided process planning and computer-aided fixture planning have been widely researched in the last two decades. Most of these computer-aided systems are, however, either dealing only with process planning or fixture design. A set-up planning system for the machining of prismatic parts on a 3-axis vertical machining centre is proposed. This system formulates set-up plans based on the initial, intermediate and final states of a part. The system uses the fuzzy set representation, along with production rules and object representation.

Efficient Local Planning with Linear Function Approximation Machine Learning

We study query and computationally efficient planning algorithms with linear function approximation and a simulator. We assume that the agent only has local access to the simulator, meaning that the agent can only query the simulator at states that have been visited before. This setting is more practical than many prior works on reinforcement learning with a generative model. We propose an algorithm named confident Monte Carlo least square policy iteration (Confident MC-LSPI) for this setting. Under the assumption that the Q-functions of all deterministic policies are linear in known features of the state-action pairs, we show that our algorithm has polynomial query and computational complexities in the dimension of the features, the effective planning horizon and the targeted sub-optimality, while these complexities are independent of the size of the state space. One technical contribution of our work is the introduction of a novel proof technique that makes use of a virtual policy iteration algorithm. We use this method to leverage existing results on $\ell_\infty$-bounded approximate policy iteration to show that our algorithm can learn the optimal policy for the given initial state even only with local access to the simulator. We believe that this technique can be extended to broader settings beyond this work.

A Review on Computational Intelligence Techniques in Cloud and Edge Computing Artificial Intelligence

Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users' requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This paper provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions.

Efficient Planning in Large MDPs with Weak Linear Function Approximation Machine Learning

Large-scale Markov decision processes (MDPs) require planning algorithms with runtime independent of the number of states of the MDP. We consider the planning problem in MDPs using linear value function approximation with only weak requirements: low approximation error for the optimal value function, and a small set of "core" states whose features span those of other states. In particular, we make no assumptions about the representability of policies or value functions of non-optimal policies. Our algorithm produces almost-optimal actions for any state using a generative oracle (simulator) for the MDP, while its computation time scales polynomially with the number of features, core states, and actions and the effective horizon.

Bayes-Adaptive Simulation-based Search with Value Function Approximation

Neural Information Processing Systems

Bayes-adaptive planning offers a principled solution to the explorationexploitation trade-offunder model uncertainty. It finds the optimal policy in belief space, which explicitly accounts for the expected effect on future rewards of reductions in uncertainty. However, the Bayes-adaptive solution is typically intractable indomains with large or continuous state spaces. We present a tractable method for approximating the Bayes-adaptive solution by combining simulationbased searchwith a novel value function approximation technique that generalises appropriately over belief space. Our method outperforms prior approaches in both discrete bandit tasks and simple continuous navigation and control tasks.

Truth as Utility: A Conceptual Synthesis Artificial Intelligence

This paper introduces conceptual relations that synthesize utilitarian and logical concepts, extending the logics of preference of Rescher. We define first, in the context of a possible worlds model, constraint-dependent measures that quantify the relative quality of alternative solutions of reasoning problems or the relative desirability of various policies in control, decision, and planning problems. We show that these measures may be interpreted as truth values in a multi valued logic and propose mechanisms for the representation of complex constraints as combinations of simpler restrictions. These extended logical operations permit also the combination and aggregation of goal-specific quality measures into global measures of utility. We identify also relations that represent differential preferences between alternative solutions and relate them to the previously defined desirability measures. Extending conventional modal logic formulations, we introduce structures for the representation of ignorance about the utility of alternative solutions. Finally, we examine relations between these concepts and similarity based semantic models of fuzzy logic.