Collaborating Authors


Systems Challenges for Trustworthy Embodied Systems Artificial Intelligence

A new generation of increasingly autonomous and self-learning systems, which we call embodied systems, is about to be developed. When deploying these systems into a real-life context we face various engineering challenges, as it is crucial to coordinate the behavior of embodied systems in a beneficial manner, ensure their compatibility with our human-centered social values, and design verifiably safe and reliable human-machine interaction. We are arguing that raditional systems engineering is coming to a climacteric from embedded to embodied systems, and with assuring the trustworthiness of dynamic federations of situationally aware, intent-driven, explorative, ever-evolving, largely non-predictable, and increasingly autonomous embodied systems in uncertain, complex, and unpredictable real-world contexts. We are also identifying a number of urgent systems challenges for trustworthy embodied systems, including robust and human-centric AI, cognitive architectures, uncertainty quantification, trustworthy self-integration, and continual analysis and assurance.

Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Learning nonlinear dynamics in synchronization of knowledge-based leader-following networks Artificial Intelligence

Knowledge-based leader-following synchronization problem of heterogeneous nonlinear multi-agent systems is challenging since the leader's dynamic information is unknown to all follower nodes. This paper proposes a learning-based fully distributed observer for a class of nonlinear leader systems, which can simultaneously learn the leader's dynamics and states. The class of leader dynamics considered here does not require a bounded Jacobian matrix. Based on this learning-based distributed observer, we further synthesize an adaptive distributed control law for solving the leader-following synchronization problem of multiple Euler-Lagrange systems subject to an uncertain nonlinear leader system. The results are illustrated by a simulation example.

Explanation as Question Answering based on Design Knowledge Artificial Intelligence

Explanation of an AI agent requires knowledge of its design and operation. An open question is how to identify, access and use this design knowledge for generating explanations. Many AI agents used in practice, such as intelligent tutoring systems fielded in educational contexts, typically come with a User Guide that explains what the agent does, how it works and how to use the agent. However, few humans actually read the User Guide in detail. Instead, most users seek answers to their questions on demand. In this paper, we describe a question answering agent (AskJill) that uses the User Guide for an interactive learning environment (VERA) to automatically answer questions and thereby explains the domain, functioning, and operation of VERA. We present a preliminary assessment of AskJill in VERA.

Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021 Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.



In the first article of this series, we have established a patient centric semantic net and discussed structure and possible content of such a net. In this article, we are going to discuss frames and thematic role systems and why they are important in the functioning of an intelligent agent. They are typically top-down knowledge-based structures that sets expectation about one or more events. For example, consider the Diabetes type 2 drug Thiazolidinediones. As a result this medication should not be prescribed to patients with kidney disease or heart problems.

Web-Based Fault Diagnostic and Learning System - The International Journal of Advanced Manufacturing Technology


Web-based technology holds great potential for enabling the rapid dissemination of information and facilitating distributed decision-making. This paper presents a novel knowledge-based multi-agent system for remote fault diagnosis, which is composed of diagnostic and learning agents (DLAs), machine agents (MAs) and a central management agent (CMA). Machines are remotely diagnosed by the DLAs through the communication channels between the MAs and the DLAs. In addition, the DLAs can learn new expertise from the users, and the CMA can update the central knowledge base (CKB) shared by all the DLAs with the valuable expertise. When faults that cannot be solved with the present knowledge base occur, the DLA can acquire new knowledge, translate it into rules using a rule builder, and update the rules into the CKB.

Shared Model of Sense-making for Human-Machine Collaboration Artificial Intelligence

We present a model of sense-making that greatly facilitates the collaboration between an intelligent analyst and a knowledge-based agent. It is a general model grounded in the science of evidence and the scientific method of hypothesis generation and testing, where sense-making hypotheses that explain an observation are generated, relevant evidence is then discovered, and the hypotheses are tested based on the discovered evidence. We illustrate how the model enables an analyst to directly instruct the agent to understand situations involving the possible production of weapons (e.g., chemical warfare agents) and how the agent becomes increasingly more competent in understanding other situations from that domain (e.g., possible production of centrifuge-enriched uranium or of stealth fighter aircraft).

A guided journey through non-interactive automatic story generation Artificial Intelligence

We present a literature survey on non-interactive computational story generation. The article starts with the presentation of requirements for creative systems, three types of models of creativity (computational, socio-cultural, and individual), and models of human creative writing. Then it reviews each class of story generation approach depending on the used technology: story-schemas, analogy, rules, planning, evolutionary algorithms, implicit knowledge learning, and explicit knowledge learning. Before the concluding section, the article analyses the contributions of the reviewed work to improve the quality of the generated stories. This analysis addresses the description of the story characters, the use of narrative knowledge including about character believability, and the possible lack of more comprehensive or more detailed knowledge or creativity models. Finally, the article presents concluding remarks in the form of suggestions of research topics that might have a significant impact on the advancement of the state of the art on autonomous non-interactive story generation systems. The article concludes that the autonomous generation and adoption of the main idea to be conveyed and the autonomous design of the creativity ensuring criteria are possibly two of most important topics for future research.