Collaborating Authors


AI in Analytics: Powering the Future of Data Analytics - Dataconomy


Augmented analytics: the combination of AI and analytics is the latest innovation in data analytics. For organizations, data analysis has evolved from hiring "unicorn" data scientists – to having smart applications that provide actionable insights for decision-making in just a few clicks, thanks to AI. Augmenting by definition means making something greater in strength or value. Augmented analytics, also known as AI-driven analytics, helps in identifying hidden patterns in large data sets and uncovers trends and actionable insights. It leverages technologies such as Analytics, Machine Learning, and Natural Language Generation to automate data management processes and assist with the hard parts of analytics. The capabilities of AI are poised to augment analytics activities and enable companies to internalize data-driven decision-making while enabling everyone in the organization to easily deal with data.

Google: Learn cloud skills for free with our new training tracks


Google is offering a free course for people who are on the hunt for skills to use containers, big data and machine-learning models in Google Cloud. The initial batch of courses consists of four tracks aimed at data analysts, cloud architects, data scientists and machine-learning engineers. The January 2021 course offers a fast track to understand key tools for engineers and architects to use in Google Cloud. It includes a series on getting started in Google Cloud, another focussing on its BigQuery data warehouse, one that delves into the Kubernetes engine for managing containers, another for the Anthos application management platform, and a final chapter on Google's standard interfaces for natural language processing and computer vision AI. Participants need to sign up to Google's "skills challenge" and will be given 30 days' free access to Google Cloud labs.

Top 100 Artificial Intelligence Companies in the World


Artificial Intelligence (AI) is not just a buzzword, but a crucial part of the technology landscape. AI is changing every industry and business function, which results in increased interest in its applications, subdomains and related fields. This makes AI companies the top leaders driving the technology swift. AI helps us to optimise and automate crucial business processes, gather essential data and transform the world, one step at a time. From Google and Amazon to Apple and Microsoft, every major tech company is dedicating resources to breakthroughs in artificial intelligence. As big enterprises are busy acquiring or merging with other emerging inventions, small AI companies are also working hard to develop their own intelligent technology and services. By leveraging artificial intelligence, organizations get an innovative edge in the digital age. AI consults are also working to provide companies with expertise that can help them grow. In this digital era, AI is also a significant place for investment. AI companies are constantly developing the latest products to provide the simplest solutions. Henceforth, Analytics Insight brings you the list of top 100 AI companies that are leading the technology drive towards a better tomorrow. AEye develops advanced vision hardware, software, and algorithms that act as the eyes and visual cortex of autonomous vehicles. AEye is an artificial perception pioneer and creator of iDAR, a new form of intelligent data collection that acts as the eyes and visual cortex of autonomous vehicles. Since its demonstration of its solid state LiDAR scanner in 2013, AEye has pioneered breakthroughs in intelligent sensing. Their mission was to acquire the most information with the fewest ones and zeros. This would allow AEye to drive the automotive industry into the next realm of autonomy. Algorithmia invented the AI Layer.

Discovering New Intents with Deep Aligned Clustering Artificial Intelligence

Discovering new intents is a crucial task in a dialogue system. Most existing methods are limited in transferring the prior knowledge from known intents to new intents. These methods also have difficulties in providing high-quality supervised signals to learn clustering-friendly features for grouping unlabeled intents. In this work, we propose an effective method (Deep Aligned Clustering) to discover new intents with the aid of limited known intent data. Firstly, we leverage a few labeled known intent samples as prior knowledge to pre-train the model. Then, we perform k-means to produce cluster assignments as pseudo-labels. Moreover, we propose an alignment strategy to tackle the label inconsistency during clustering assignments. Finally, we learn the intent representations under the supervision of the aligned pseudo-labels. With an unknown number of new intents, we predict the number of intent categories by eliminating low-confidence intent-wise clusters. Extensive experiments on two benchmark datasets show that our method is more robust and achieves substantial improvements over the state-of-the-art methods.(Code available at

On how Cognitive Computing will plan your next Systematic Review Artificial Intelligence

Systematic literature reviews (SLRs) are at the heart of evidence-based research, setting the foundation for future research and practice. However, producing good quality timely contributions is a challenging and highly cognitive endeavor, which has lately motivated the exploration of automation and support in the SLR process. In this paper we address an often overlooked phase in this process, that of planning literature reviews, and explore under the lenses of cognitive process augmentation how to overcome its most salient challenges. In doing so, we report on the insights from 24 SLR authors on planning practices, its challenges as well as feedback on support strategies inspired by recent advances in cognitive computing.

Schema Extraction on Semi-structured Data Artificial Intelligence

With the continuous development of NoSQL databases, more and more developers choose to use semi-structured data for development and data management, which puts forward requirements for schema management of semi-structured data stored in NoSQL databases. Schema extraction plays an important role in understanding schemas, optimizing queries, and validating data consistency. Therefore, in this survey we investigate structural methods based on tree and graph and statistical methods based on distributed architecture and machine learning to extract schemas. The schemas obtained by the structural methods are more interpretable, and the statistical methods have better applicability and generalization ability. Moreover, we also investigate tools and systems for schemas extraction. Schema extraction tools are mainly used for spark or NoSQL databases, and are suitable for small datasets or simple application environments. The system mainly focuses on the extraction and management of schemas in large data sets and complex application scenarios. Furthermore, we also compare these techniques to facilitate data managers' choice.

Efficient Clustering from Distributions over Topics Artificial Intelligence

There are many scenarios where we may want to find pairs of textually similar documents in a large corpus (e.g. a researcher doing literature review, or an R&D project manager analyzing project proposals). To programmatically discover those connections can help experts to achieve those goals, but brute-force pairwise comparisons are not computationally adequate when the size of the document corpus is too large. Some algorithms in the literature divide the search space into regions containing potentially similar documents, which are later processed separately from the rest in order to reduce the number of pairs compared. However, this kind of unsupervised methods still incur in high temporal costs. In this paper, we present an approach that relies on the results of a topic modeling algorithm over the documents in a collection, as a means to identify smaller subsets of documents where the similarity function can then be computed. This approach has proved to obtain promising results when identifying similar documents in the domain of scientific publications. We have compared our approach against state of the art clustering techniques and with different configurations for the topic modeling algorithm. Results suggest that our approach outperforms (> 0.5) the other analyzed techniques in terms of efficiency.

Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges Artificial Intelligence

As we make tremendous advances in machine learning and artificial intelligence technosciences, there is a renewed understanding in the AI community that we must ensure that humans being are at the center of our deliberations so that we don't end in technology-induced dystopias. As strongly argued by Green in his book Smart Enough City, the incorporation of technology in city environs does not automatically translate into prosperity, wellbeing, urban livability, or social justice. There is a great need to deliberate on the future of the cities worth living and designing. There are philosophical and ethical questions involved along with various challenges that relate to the security, safety, and interpretability of AI algorithms that will form the technological bedrock of future cities. Several research institutes on human centered AI have been established at top international universities. Globally there are calls for technology to be made more humane and human-compatible. For example, Stuart Russell has a book called Human Compatible AI. The Center for Humane Technology advocates for regulators and technology companies to avoid business models and product features that contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical challenges to a successful deployment of AI or ML in human-centric applications, with a particular emphasis on the convergence of these challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions.

Will Hyperautomation Enforce Transformation of Existing RPA Practices?


Gartner says enterprises need to deliver end-to-end automation beyond RPA by combining complementary technologies to augment business processes. To address this concern, we have an update called hyperautomation. This term first appeared in October of 2019, taking the top spot on Gartner's Top 10 Strategic Technology Trends for 2020 list. While automation uses technology to perform work that initially required human action, RPA enabled an easy transition to automation at the industry level. However, the main limitation of RPA is that it can only automate simple tasks as it works by following predefined rules with structured data. Meanwhile hyperautomation allows enterprises to automate more complex work.

Computing & Data Sciences Now Accepting Applications for Its New PhD Program


Azer Bestavros, associate provost for computing and data sciences, says the new PhD program will emphasize the ethical and responsible application of computing technology. With its state-of-the-art Center for Computing & Data Sciences scheduled to open in 2022, BU's Faculty of Computing & Data Sciences (CDS) is now accepting applications for a new cross-disciplinary PhD program, where candidates will be able to work under the guidance of faculty within CDS as well as CDS-affiliated faculty in a domain of their choice. Azer Bestavros, associate provost for computing and data sciences, says PhD students in CDS will have the opportunity to pursue research that stands to impact a variety of disciplines. "That's what computing and data science research does," he says, "so the idea is to have a program where it is possible to marry data science with another discipline. That discipline could be in the social sciences or the humanities or it could be in engineering or life sciences. That will be up to the student."