Goto

Collaborating Authors

Results


Interview resources : ML/Data Science/AI Research Engineer

#artificialintelligence

Interviewing is a grueling process, specially during COVID. I recently interviewed with Microsoft (Data Scientist ll), Amazon (Applied AI Scientist) and Apple (Software Development : Machine…


9 Completely Free Statistics Courses for Data Science

#artificialintelligence

This is a complete Free course for statistics. In this course, you will learn how to estimate parameters of a population using sample statistics, hypothesis testing and confidence intervals, t-tests and ANOVA, correlation and regression, and chi-squared test. This course is taught by industry professionals and you will learn by doing various exercises.


The Application of Machine Learning Techniques for Predicting Match Results in Team Sport: A Review

Journal of Artificial Intelligence Research

Predicting the results of matches in sport is a challenging and interesting task. In this paper, we review a selection of studies from 1996 to 2019 that used machine learning for predicting match results in team sport. Considering both invasion sports and striking/fielding sports, we discuss commonly applied machine learning algorithms, as well as common approaches related to data and evaluation. Our study considers accuracies that have been achieved across different sports, and explores whether evidence exists to support the notion that outcomes of some sports may be inherently more difficult to predict. We also uncover common themes of future research directions and propose recommendations for future researchers. Although there remains a lack of benchmark datasets (apart from in soccer), and the differences between sports, datasets and features makes between-study comparisons difficult, as we discuss, it is possible to evaluate accuracy performance in other ways. Artificial Neural Networks were commonly applied in early studies, however, our findings suggest that a range of models should instead be compared. Selecting and engineering an appropriate feature set appears to be more important than having a large number of instances. For feature selection, we see potential for greater inter-disciplinary collaboration between sport performance analysis, a sub-discipline of sport science, and machine learning.


Machine Learning Bootcamp: SVM,Kmeans,KNN,LinReg,PCA,DBS

#artificialintelligence

The course covers Machine Learning in exhaustive way. The presentations and hands-on practical are made such that it's made easy. The knowledge gained through this tutorial series can be applied to various real world scenarios. UnSupervised learning does not require to supervise the model. Instead, it allows the model to work on its own to discover patterns and information that was previously undetected. It mainly deals with the unlabeled data.


A Hybrid Feature Extraction Method for Nepali COVID-19-Related Tweets Classification

#artificialintelligence

COVID-19 is one of the deadliest viruses, which has killed millions of people around the world to this date. The reason for peoples' death is not only linked to its infection but also to peoples' mental states and sentiments triggered by the fear of the virus. People's sentiments, which are predominantly available in the form of posts/tweets on social media, can be interpreted using two kinds of information: syntactical and semantic. Herein, we propose to analyze peoples' sentiment using both kinds of information (syntactical and semantic) on the COVID-19-related twitter dataset available in the Nepali language. For this, we, first, use two widely used text representation methods: TF-IDF and FastText and then combine them to achieve the hybrid features to capture the highly discriminating features. Second, we implement nine widely used machine learning classifiers (Logistic Regression, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, Decision Trees, Random Forest, Extreme Tree classifier, AdaBoost, and Multilayer Perceptron), based on the three feature representation methods: TF-IDF, FastText, and Hybrid. To evaluate our methods, we use a publicly available Nepali-COVID-19 tweets dataset, NepCov19Tweets, which consists of Nepali tweets categorized into three classes (Positive, Negative, and Neutral). The evaluation results on the NepCOV19Tweets show that the hybrid feature extraction method not only outperforms the other two individual feature extraction methods while using nine different machine learning algorithms but also provides excellent performance when compared with the state-of-the-art methods. Natural language processing (NLP) techniques have been developed to assess peoples' sentiments on various topics.


Top Machine Learning Algorithms Used By AI Professionals: Explained

#artificialintelligence

Machine Learning and Artificial Intelligence have been deemed the "hot topics" for every trending article in 2021. It's similar to how the internet revolutionized everyone's lives. Artificial Intelligence (A.I.) and Machine Learning will transform our lives in ways labelled impossible years ago. In 1959, Arthur Samuel coined the term Machine Learning. He was a pioneer in Artificial Intelligence, computer gaming and Machine Learning.


Machine Learning Classification Bootcamp in Python

#artificialintelligence

Apply advanced machine learning models to perform sentiment analysis and classify customer reviews such as Amazon Alexa products reviews Understand the theory and intuition behind several machine learning algorithms such as K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression Implement classification algorithms in Scikit-Learn for K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression Build an e-mail spam classifier using Naive Bayes classification Technique Apply machine learning models to Healthcare applications such as Cancer and Kyphosis diseases classification Develop Models to predict customer behavior towards targeted Facebook Ads Classify data using K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression Build an in-store feature to predict customer's size using their features Develop a fraud detection classifier using Machine Learning Techniques Master Python Seaborn library for statistical plots Understand the difference between Machine Learning, Deep Learning and Artificial Intelligence Perform feature engineering and clean your training and testing data to remove outliers Master Python and Scikit-Learn for Data Science and Machine Learning Learn to use Python Matplotlib library for data Plotting Build an in-store feature to predict customer's size using their features Are you ready to master Machine Learning techniques and Kick-off your career as a Data Scientist?! You came to the right place! Machine Learning skill is one of the top skills to acquire in 2019 with an average salary of over $114,000 in the United States according to PayScale! The total number of ML jobs over the past two years has grown around 600 percent and expected to grow even more by 2020. In this course, we are going to provide students with knowledge of key aspects of state-of-the-art classification techniques.


Survey and Evaluation of Causal Discovery Methods for Time Series

Journal of Artificial Intelligence Research

We introduce in this survey the major concepts, models, and algorithms proposed so far to infer causal relations from observational time series, a task usually referred to as causal discovery in time series. To do so, after a description of the underlying concepts and modelling assumptions, we present different methods according to the family of approaches they belong to: Granger causality, constraint-based approaches, noise-based approaches, score-based approaches, logic-based approaches, topology-based approaches, and difference-based approaches. We then evaluate several representative methods to illustrate the behaviour of different families of approaches. This illustration is conducted on both artificial and real datasets, with different characteristics. The main conclusions one can draw from this survey is that causal discovery in times series is an active research field in which new methods (in every family of approaches) are regularly proposed, and that no family or method stands out in all situations. Indeed, they all rely on assumptions that may or may not be appropriate for a particular dataset.


Learn Mobile Price Prediction Through Four Classification Algorithms

#artificialintelligence

This article was published as a part of the Data Science Blogathon. Mobile phones come in all sorts of prices, features, specifications and all. Price estimation and prediction is an important part of consumer strategy. Deciding on the correct price of a product is very important for the market success of a product. A new product that has to be launched, must have the correct price so that consumers find it appropriate to buy the product.


Bayesian Statistics Overview and your first Bayesian Linear Regression Model

#artificialintelligence

Frequentist and Bayesian are two different versions of statistics. Frequentist is a more classical version, which, as the name suggests, rely on the long run frequency of events (data points) to calculate the variable of interest. Bayesian on the other hand, can also work without having a large number of events (in fact, it could work even with one data point!). The cardinal difference between the two is that: frequentist will give you a point estimate, whereas Bayesian will give you a distribution. Having a point estimate means that -- "we are certain that this is the output for this variable of interest". Whereas, having a distribution can be interpreted as -- "we have some belief that the mean of the distribution is the good estimate for this variable of interest, but there is uncertainty too, in the form of standard deviation".