Goto

Collaborating Authors

Results


BEGINNERS' GLOSSERY OF AI

#artificialintelligence

My old account got hacked and it can't be accessed now. Machine Learning (ML) is a convenient way to describe classes of algorithms that are used to gain insight into data in a way that allows a certain amount self-instruction which, if properly designed & trained, achieves a robustness to changes in initial conditions that are lacking in other types of analytic methods. Regression is a general term describing a model that explicitly defines a relationship between features of interest and a target. The term is most often used when the target is a continuous numeric dependent variable. Deep learning is a subset of ML approaches.


WRENCH: A Comprehensive Benchmark for Weak Supervision

arXiv.org Machine Learning

Recent \emph{Weak Supervision (WS)} approaches have had widespread success in easing the bottleneck of labeling training data for machine learning by synthesizing labels from multiple potentially noisy supervision sources. However, proper measurement and analysis of these approaches remain a challenge. First, datasets used in existing works are often private and/or custom, limiting standardization. Second, WS datasets with the same name and base data often vary in terms of the labels and weak supervision sources used, a significant "hidden" source of evaluation variance. Finally, WS studies often diverge in terms of the evaluation protocol and ablations used. To address these problems, we introduce a benchmark platform, \benchmark, for a thorough and standardized evaluation of WS approaches. It consists of 22 varied real-world datasets for classification and sequence tagging; a range of real, synthetic, and procedurally-generated weak supervision sources; and a modular, extensible framework for WS evaluation, including implementations for popular WS methods. We use \benchmark to conduct extensive comparisons over more than 100 method variants to demonstrate its efficacy as a benchmark platform. The code is available at \url{https://github.com/JieyuZ2/wrench}.


Rating transitions forecasting: a filtering approach

arXiv.org Machine Learning

Analyzing the effect of business cycle on rating transitions has been a subject of great interest these last fifteen years, particularly due to the increasing pressure coming from regulators for stress testing. In this paper, we consider that the dynamics of rating migrations is governed by an unobserved latent factor. Under a point process filtering framework, we explain how the current state of the hidden factor can be efficiently inferred from observations of rating histories. We then adapt the classical Baum-Welsh algorithm to our setting and show how to estimate the latent factor parameters. Once calibrated, we may reveal and detect economic changes affecting the dynamics of rating migration, in real-time. To this end we adapt a filtering formula which can then be used for predicting future transition probabilities according to economic regimes without using any external covariates. We propose two filtering frameworks: a discrete and a continuous version. We demonstrate and compare the efficiency of both approaches on fictive data and on a corporate credit rating database. The methods could also be applied to retail credit loans.


EM Algorithm

#artificialintelligence

EM (Expectation-Maximisation) Algorithm is the go to algorithm whenever we have to do parameter estimation with hidden variables, such as in hidden Markov Chains. For some reason, it is often poorly explained and students end up confused as to what exactly are we maximising in the E-step and M-steps. Here is my attempt at a (hopefully) clear and step by step explanation on exactly how EM Algorithm works.


Asynchronous and Distributed Data Augmentation for Massive Data Settings

arXiv.org Machine Learning

Data augmentation (DA) algorithms are widely used for Bayesian inference due to their simplicity. In massive data settings, however, DA algorithms are prohibitively slow because they pass through the full data in any iteration, imposing serious restrictions on their usage despite the advantages. Addressing this problem, we develop a framework for extending any DA that exploits asynchronous and distributed computing. The extended DA algorithm is indexed by a parameter $r \in (0, 1)$ and is called Asynchronous and Distributed (AD) DA with the original DA as its parent. Any ADDA starts by dividing the full data into $k$ smaller disjoint subsets and storing them on $k$ processes, which could be machines or processors. Every iteration of ADDA augments only an $r$-fraction of the $k$ data subsets with some positive probability and leaves the remaining $(1-r)$-fraction of the augmented data unchanged. The parameter draws are obtained using the $r$-fraction of new and $(1-r)$-fraction of old augmented data. For many choices of $k$ and $r$, the fractional updates of ADDA lead to a significant speed-up over the parent DA in massive data settings, and it reduces to the distributed version of its parent DA when $r=1$. We show that the ADDA Markov chain is Harris ergodic with the desired stationary distribution under mild conditions on the parent DA algorithm. We demonstrate the numerical advantages of the ADDA in three representative examples corresponding to different kinds of massive data settings encountered in applications. In all these examples, our DA generalization is significantly faster than its parent DA algorithm for all the choices of $k$ and $r$. We also establish geometric ergodicity of the ADDA Markov chain for all three examples, which in turn yields asymptotically valid standard errors for estimates of desired posterior quantities.


Complex Event Forecasting with Prediction Suffix Trees: Extended Technical Report

arXiv.org Artificial Intelligence

Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events. However, there is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine. We present a formal framework that attempts to address the issue of Complex Event Forecasting (CEF). Our framework combines two formalisms: a) symbolic automata which are used to encode complex event patterns; and b) prediction suffix trees which can provide a succinct probabilistic description of an automaton's behavior. We compare our proposed approach against state-of-the-art methods and show its advantage in terms of accuracy and efficiency. In particular, prediction suffix trees, being variable-order Markov models, have the ability to capture long-term dependencies in a stream by remembering only those past sequences that are informative enough. Our experimental results demonstrate the benefits, in terms of accuracy, of being able to capture such long-term dependencies. This is achieved by increasing the order of our model beyond what is possible with full-order Markov models that need to perform an exhaustive enumeration of all possible past sequences of a given order. We also discuss extensively how CEF solutions should be best evaluated on the quality of their forecasts.


Bubblewrap: Online tiling and real-time flow prediction on neural manifolds

arXiv.org Machine Learning

While most classic studies of function in experimental neuroscience have focused on the coding properties of individual neurons, recent developments in recording technologies have resulted in an increasing emphasis on the dynamics of neural populations. This has given rise to a wide variety of models for analyzing population activity in relation to experimental variables, but direct testing of many neural population hypotheses requires intervening in the system based on current neural state, necessitating models capable of inferring neural state online. Existing approaches, primarily based on dynamical systems, require strong parametric assumptions that are easily violated in the noise-dominated regime and do not scale well to the thousands of data channels in modern experiments. To address this problem, we propose a method that combines fast, stable dimensionality reduction with a soft tiling of the resulting neural manifold, allowing dynamics to be approximated as a probability flow between tiles. This method can be fit efficiently using online expectation maximization, scales to tens of thousands of tiles, and outperforms existing methods when dynamics are noise-dominated or feature multi-modal transition probabilities. The resulting model can be trained at kiloHertz data rates, produces accurate approximations of neural dynamics within minutes, and generates predictions on submillisecond time scales. It retains predictive performance throughout many time steps into the future and is fast enough to serve as a component of closed-loop causal experiments.


Markov Switching Model for Driver Behavior Prediction: Use cases on Smartphones

arXiv.org Artificial Intelligence

Several intelligent transportation systems focus on studying the various driver behaviors for numerous objectives. This includes the ability to analyze driver actions, sensitivity, distraction, and response time. As the data collection is one of the major concerns for learning and validating different driving situations, we present a driver behavior switching model validated by a low-cost data collection solution using smartphones. The proposed model is validated using a real dataset to predict the driver behavior in short duration periods. A literature survey on motion detection (specifically driving behavior detection using smartphones) is presented. Multiple Markov Switching Variable Auto-Regression (MSVAR) models are implemented to achieve a sophisticated fitting with the collected driver behavior data. This yields more accurate predictions not only for driver behavior but also for the entire driving situation. The performance of the presented models together with a suitable model selection criteria is also presented. The proposed driver behavior prediction framework can potentially be used in accident prediction and driver safety systems.


From Statistical Relational to Neural Symbolic Artificial Intelligence: a Survey

arXiv.org Artificial Intelligence

The integration of learning and reasoning is one of the key challenges in artificial intelligence and machine learning today, and various communities have been addressing it. That is especially true for the field of neural-symbolic computation (NeSy) [10, 21], where the goal is to integrate symbolic reasoning and neural networks. NeSy already has a long tradition, and it has recently attracted a lot of attention from various communities (cf. the keynotes of Y. Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [9] between Y. Bengio and G. Marcus). Another domain that has a rich tradition in integrating learning and reasoning is that of statistical relational learning and artificial intelligence (StarAI) [39, 85]. But rather than focusing on integrating logic and neural networks, it is centred around the question of integrating logic with probabilistic reasoning, more specifically probabilistic graphical models. Despite the common interest in combining symbolic reasoning with a basic paradigm for learning, i.e., probabilistic graphical models or neural networks, it is surprising that there are not more interactions between these two fields.


Sequential Stochastic Optimization in Separable Learning Environments

arXiv.org Machine Learning

We consider a class of sequential decision-making problems under uncertainty that can encompass various types of supervised learning concepts. These problems have a completely observed state process and a partially observed modulation process, where the state process is affected by the modulation process only through an observation process, the observation process only observes the modulation process, and the modulation process is exogenous to control. We model this broad class of problems as a partially observed Markov decision process (POMDP). The belief function for the modulation process is control invariant, thus separating the estimation of the modulation process from the control of the state process. We call this specially structured POMDP the separable POMDP, or SEP-POMDP, and show it (i) can serve as a model for a broad class of application areas, e.g., inventory control, finance, healthcare systems, (ii) inherits value function and optimal policy structure from a set of completely observed MDPs, (iii) can serve as a bridge between classical models of sequential decision making under uncertainty having fully specified model artifacts and such models that are not fully specified and require the use of predictive methods from statistics and machine learning, and (iv) allows for specialized approximate solution procedures.