to

### Popular Machine Learning Algorithms - KDnuggets

When starting out with Data Science, there is so much to learn it can become quite overwhelming. This guide will help aspiring data scientists and machine learning engineers gain better knowledge and experience. I will list different types of machine learning algorithms, which can be used with both Python and R. Linear Regression is the simplest Machine learning algorithm that branches off from Supervised Learning. It is primarily used to solve regression problems and make predictions on continuous dependent variables with the knowledge from independent variables. The goal of Linear Regression is to find the line of best fit, which can help predict the output for continuous dependent variables.

### 9 Completely Free Statistics Courses for Data Science

This is a complete Free course for statistics. In this course, you will learn how to estimate parameters of a population using sample statistics, hypothesis testing and confidence intervals, t-tests and ANOVA, correlation and regression, and chi-squared test. This course is taught by industry professionals and you will learn by doing various exercises.

### The Application of Machine Learning Techniques for Predicting Match Results in Team Sport: A Review

Predicting the results of matches in sport is a challenging and interesting task. In this paper, we review a selection of studies from 1996 to 2019 that used machine learning for predicting match results in team sport. Considering both invasion sports and striking/fielding sports, we discuss commonly applied machine learning algorithms, as well as common approaches related to data and evaluation. Our study considers accuracies that have been achieved across different sports, and explores whether evidence exists to support the notion that outcomes of some sports may be inherently more difficult to predict. We also uncover common themes of future research directions and propose recommendations for future researchers. Although there remains a lack of benchmark datasets (apart from in soccer), and the differences between sports, datasets and features makes between-study comparisons difficult, as we discuss, it is possible to evaluate accuracy performance in other ways. Artificial Neural Networks were commonly applied in early studies, however, our findings suggest that a range of models should instead be compared. Selecting and engineering an appropriate feature set appears to be more important than having a large number of instances. For feature selection, we see potential for greater inter-disciplinary collaboration between sport performance analysis, a sub-discipline of sport science, and machine learning.

### Multiobjective Tree-Structured Parzen Estimator

Practitioners often encounter challenging real-world problems that involve a simultaneous optimization of multiple objectives in a complex search space. To address these problems, we propose a practical multiobjective Bayesian optimization algorithm. It is an extension of the widely used Tree-structured Parzen Estimator (TPE) algorithm, called Multiobjective Tree-structured Parzen Estimator (MOTPE). We demonstrate that MOTPE approximates the Pareto fronts of a variety of benchmark problems and a convolutional neural network design problem better than existing methods through the numerical results. We also investigate how the configuration of MOTPE affects the behavior and the performance of the method and the effectiveness of asynchronous parallelization of the method based on the empirical results.

### Low-rank features based double transformation matrices learning for image classification

Linear regression is a supervised method that has been widely used in classification tasks. In order to apply linear regression to classification tasks, a technique for relaxing regression targets was proposed. However, methods based on this technique ignore the pressure on a single transformation matrix due to the complex information contained in the data. A single transformation matrix in this case is too strict to provide a flexible projection, thus it is necessary to adopt relaxation on transformation matrix. This paper proposes a double transformation matrices learning method based on latent low-rank feature extraction. The core idea is to use double transformation matrices for relaxation, and jointly projecting the learned principal and salient features from two directions into the label space, which can share the pressure of a single transformation matrix. Firstly, the low-rank features are learned by the latent low rank representation (LatLRR) method which processes the original data from two directions. In this process, sparse noise is also separated, which alleviates its interference on projection learning to some extent. Then, two transformation matrices are introduced to process the two features separately, and the information useful for the classification is extracted. Finally, the two transformation matrices can be easily obtained by alternate optimization methods. Through such processing, even when a large amount of redundant information is contained in samples, our method can also obtain projection results that are easy to classify. Experiments on multiple data sets demonstrate the effectiveness of our approach for classification, especially for complex scenarios.

### Stochastic linear optimization never overfits with quadratically-bounded losses on general data

This work shows that a diverse collection of linear optimization methods, when run on general data, fail to overfit, despite lacking any explicit constraints or regularization: with high probability, their trajectories stay near the curve of optimal constrained solutions over the population distribution. This analysis is powered by an elementary but flexible proof scheme which can handle many settings, summarized as follows. Firstly, the data can be general: unlike other implicit bias works, it need not satisfy large margin or other structural conditions, and moreover can arrive sequentially IID, sequentially following a Markov chain, as a batch, and lastly it can have heavy tails. Secondly, while the main analysis is for mirror descent, rates are also provided for the Temporal-Difference fixed-point method from reinforcement learning; all prior high probability analyses in these settings required bounded iterates, bounded updates, bounded noise, or some equivalent. Thirdly, the losses are general, and for instance the logistic and squared losses can be handled simultaneously, unlike other implicit bias works. In all of these settings, not only is low population error guaranteed with high probability, but moreover low sample complexity is guaranteed so long as there exists any low-complexity near-optimal solution, even if the global problem structure and in particular global optima have high complexity.

### 10 Best Machine Learning Algorithms

Though we're living through a time of extraordinary innovation in GPU-accelerated machine learning, the latest research papers frequently (and prominently) feature algorithms that are decades, in certain cases 70 years old. Some might contend that many of these older methods fall into the camp of'statistical analysis' rather than machine learning, and prefer to date the advent of the sector back only so far as 1957, with the invention of the Perceptron. Given the extent to which these older algorithms support and are enmeshed in the latest trends and headline-grabbing developments in machine learning, it's a contestable stance. So let's take a look at some of the'classic' building blocks underpinning the latest innovations, as well as some newer entries that are making an early bid for the AI hall of fame. In 2017 Google Research led a research collaboration culminating in the paper Attention Is All You Need.

### Fast and Robust Sparsity Learning over Networks: A Decentralized Surrogate Median Regression Approach

In recent years, decentralized machine learning (ML) has received growing research interest due to its advantages in system stability, data privacy, and computation efficiency [24, 28]. In contrast to the traditional centralized distributed architecture coordinated by a master machine, decentralized ML works with peer-topeer networked systems, where workers can perform local computation and pass the message through the network links. The goal of decentralized ML is to learn a global ML model by having workers optimize their own models and share local model information with their neighbors. So far, decentralized ML has achieved significant success in many scientific and engineering areas, including distributed sensing in wireless sensor networks[25, 29, 33, 50], multi-agent robotic systems[4, 31, 53], smart grids[13, 17] etc. However, in spite of the increasing adoption in applications, the performances of most decentralized ML methods are not robust and are vulnerable to the following three aspects: 1) Data Heterogeneity. Due to the lack of the global information aggregated by the central master, workers in decentralized network systems learn the model heavily relied on the local data and neighboring information.

### Adversarial Attacks and Defense Methods for Power Quality Recognition

Vulnerability of various machine learning methods to adversarial examples has been recently explored in the literature. Power systems which use these vulnerable methods face a huge threat against adversarial examples. To this end, we first propose a signal-specific method and a universal signal-agnostic method to attack power systems using generated adversarial examples. Black-box attacks based on transferable characteristics and the above two methods are also proposed and evaluated. We then adopt adversarial training to defend systems against adversarial attacks. Experimental analyses demonstrate that our signal-specific attack method provides less perturbation compared to the FGSM (Fast Gradient Sign Method), and our signal-agnostic attack method can generate perturbations fooling most natural signals with high probability. What's more, the attack method based on the universal signal-agnostic algorithm has a higher transfer rate of black-box attacks than the attack method based on the signal-specific algorithm. In addition, the results show that the proposed adversarial training improves robustness of power systems to adversarial examples. OWER quality refers to a variety of electromagnetic phenomena that characterize voltage and current measured at a given time instance and location in a power system [2]. Disturbance of power quality (PQ) signals can cause severe problems in electrical grids [3].

### Confident AI

In this paper, we propose "Confident AI" as a means to designing Artificial Intelligence (AI) and Machine Learning (ML) systems with both algorithm and user confidence in model predictions and reported results. The 4 basic tenets of Confident AI are Repeatability, Believability, Sufficiency, and Adaptability. Each of the tenets is used to explore fundamental issues in current AI/ML systems and together provide an overall approach to Confident AI.