Goto

Collaborating Authors

Results


Boosting Barely Robust Learners: A New Perspective on Adversarial Robustness

arXiv.org Machine Learning

We present an oracle-efficient algorithm for boosting the adversarial robustness of barely robust learners. Barely robust learning algorithms learn predictors that are adversarially robust only on a small fraction $\beta \ll 1$ of the data distribution. Our proposed notion of barely robust learning requires robustness with respect to a "larger" perturbation set; which we show is necessary for strongly robust learning, and that weaker relaxations are not sufficient for strongly robust learning. Our results reveal a qualitative and quantitative equivalence between two seemingly unrelated problems: strongly robust learning and barely robust learning.


The Lifecycle of a Statistical Model: Model Failure Detection, Identification, and Refitting

arXiv.org Machine Learning

The statistical machine learning community has demonstrated considerable resourcefulness over the years in developing highly expressive tools for estimation, prediction, and inference. The bedrock assumptions underlying these developments are that the data comes from a fixed population and displays little heterogeneity. But reality is significantly more complex: statistical models now routinely fail when released into real-world systems and scientific applications, where such assumptions rarely hold. Consequently, we pursue a different path in this paper vis-a-vis the well-worn trail of developing new methodology for estimation and prediction. In this paper, we develop tools and theory for detecting and identifying regions of the covariate space (subpopulations) where model performance has begun to degrade, and study intervening to fix these failures through refitting. We present empirical results with three real-world data sets -- including a time series involving forecasting the incidence of COVID-19 -- showing that our methodology generates interpretable results, is useful for tracking model performance, and can boost model performance through refitting. We complement these empirical results with theory proving that our methodology is minimax optimal for recovering anomalous subpopulations as well as refitting to improve accuracy in a structured normal means setting.


Near-Optimal Learning of Extensive-Form Games with Imperfect Information

arXiv.org Machine Learning

This paper resolves the open question of designing near-optimal algorithms for learning imperfect-information extensive-form games from bandit feedback. We present the first line of algorithms that require only $\widetilde{\mathcal{O}}((XA+YB)/\varepsilon^2)$ episodes of play to find an $\varepsilon$-approximate Nash equilibrium in two-player zero-sum games, where $X,Y$ are the number of information sets and $A,B$ are the number of actions for the two players. This improves upon the best known sample complexity of $\widetilde{\mathcal{O}}((X^2A+Y^2B)/\varepsilon^2)$ by a factor of $\widetilde{\mathcal{O}}(\max\{X, Y\})$, and matches the information-theoretic lower bound up to logarithmic factors. We achieve this sample complexity by two new algorithms: Balanced Online Mirror Descent, and Balanced Counterfactual Regret Minimization. Both algorithms rely on novel approaches of integrating \emph{balanced exploration policies} into their classical counterparts. We also extend our results to learning Coarse Correlated Equilibria in multi-player general-sum games.


Structure-preserving GANs

arXiv.org Machine Learning

Generative adversarial networks (GANs), a class of distribution-learning methods based on a two-player game between a generator and a discriminator, can generally be formulated as a minmax problem based on the variational representation of a divergence between the unknown and the generated distributions. We introduce structure-preserving GANs as a data-efficient framework for learning distributions with additional structure such as group symmetry, by developing new variational representations for divergences. Our theory shows that we can reduce the discriminator space to its projection on the invariant discriminator space, using the conditional expectation with respect to the $\sigma$-algebra associated to the underlying structure. In addition, we prove that the discriminator space reduction must be accompanied by a careful design of structured generators, as flawed designs may easily lead to a catastrophic "mode collapse" of the learned distribution. We contextualize our framework by building symmetry-preserving GANs for distributions with intrinsic group symmetry, and demonstrate that both players, namely the equivariant generator and invariant discriminator, play important but distinct roles in the learning process. Empirical experiments and ablation studies across a broad range of data sets, including real-world medical imaging, validate our theory, and show our proposed methods achieve significantly improved sample fidelity and diversity -- almost an order of magnitude measured in Fr\'echet Inception Distance -- especially in the small data regime.


Quantifying Relevance in Learning and Inference

arXiv.org Machine Learning

Learning is a distinctive feature of intelligent behaviour. High-throughput experimental data and Big Data promise to open new windows on complex systems such as cells, the brain or our societies. Yet, the puzzling success of Artificial Intelligence and Machine Learning shows that we still have a poor conceptual understanding of learning. These applications push statistical inference into uncharted territories where data is high-dimensional and scarce, and prior information on "true" models is scant if not totally absent. Here we review recent progress on understanding learning, based on the notion of "relevance". The relevance, as we define it here, quantifies the amount of information that a dataset or the internal representation of a learning machine contains on the generative model of the data. This allows us to define maximally informative samples, on one hand, and optimal learning machines on the other. These are ideal limits of samples and of machines, that contain the maximal amount of information about the unknown generative process, at a given resolution (or level of compression). Both ideal limits exhibit critical features in the statistical sense: Maximally informative samples are characterised by a power-law frequency distribution (statistical criticality) and optimal learning machines by an anomalously large susceptibility. The trade-off between resolution (i.e. compression) and relevance distinguishes the regime of noisy representations from that of lossy compression. These are separated by a special point characterised by Zipf's law statistics. This identifies samples obeying Zipf's law as the most compressed loss-less representations that are optimal in the sense of maximal relevance. Criticality in optimal learning machines manifests in an exponential degeneracy of energy levels, that leads to unusual thermodynamic properties.


Active Learning Polynomial Threshold Functions

arXiv.org Machine Learning

We initiate the study of active learning polynomial threshold functions (PTFs). While traditional lower bounds imply that even univariate quadratics cannot be non-trivially actively learned, we show that allowing the learner basic access to the derivatives of the underlying classifier circumvents this issue and leads to a computationally efficient algorithm for active learning degree-$d$ univariate PTFs in $\tilde{O}(d^3\log(1/\varepsilon\delta))$ queries. We also provide near-optimal algorithms and analyses for active learning PTFs in several average case settings. Finally, we prove that access to derivatives is insufficient for active learning multivariate PTFs, even those of just two variables.


Hyperplane bounds for neural feature mappings

arXiv.org Artificial Intelligence

When minimising the empirical risk, the generalisation of the learnt function still depends on the performance on the training data, the Vapnik-Chervonenkis(VC)- dimension of the function and the number of training examples. Neural networks have a large number of parameters, which correlates with their VC-dimension that is typically large but not infinite, and typically a large number of training instances are needed to effectively train them. In this work, we explore how to optimize feature mappings using neural network with the intention to reduce the effective VC-dimension of the hyperplane found in the space generatedby the mapping. An interpretationofthe resultsofthis study isthat it ispossible to define a loss that controls the VC-dimension of the separating hyperplane. We evaluate this approach and observe that the performance when using this method improves when the size of the training set is small.


Exact learning for infinite families of concepts

arXiv.org Artificial Intelligence

In this paper, based on results of exact learning, test theory, and rough set theory, we study arbitrary infinite families of concepts each of which consists of an infinite set of elements and an infinite set of subsets of this set called concepts. We consider the notion of a problem over a family of concepts that is described by a finite number of elements: for a given concept, we should recognize which of the elements under consideration belong to this concept. As algorithms for problem solving, we consider decision trees of five types: (i) using membership queries, (ii) using equivalence queries, (iii) using both membership and equivalence queries, (iv) using proper equivalence queries, and (v) using both membership and proper equivalence queries. As time complexity, we study the depth of decision trees. In the worst case, with the growth of the number of elements in the problem description, the minimum depth of decision trees of the first type either grows as a logarithm or linearly, and the minimum depth of decision trees of each of the other types either is bounded from above by a constant or grows as a logarithm, or linearly. The obtained results allow us to distinguish seven complexity classes of infinite families of concepts.


Universalizing Weak Supervision

arXiv.org Artificial Intelligence

Weak supervision (WS) frameworks are a popular way to bypass hand-labeling large datasets for training data-hungry models. These approaches synthesize multiple noisy but cheaply-acquired estimates of labels into a set of high-quality pseudolabels for downstream training. However, the synthesis technique is specific to a particular kind of label, such as binary labels or sequences, and each new label type requires manually designing a new synthesis algorithm. Instead, we propose a universal technique that enables weak supervision over any label type while still offering desirable properties, including practical flexibility, computational efficiency, and theoretical guarantees. We apply this technique to important problems previously not tackled by WS frameworks including learning to rank, regression, and learning in hyperbolic manifolds. Theoretically, our synthesis approach produces a consistent estimator for learning a challenging but important generalization of the exponential family model. Experimentally, we validate our framework and show improvement over baselines in diverse settings including real-world learning-to-rank and regression problems along with learning on hyperbolic manifolds.


On the Existence of the Adversarial Bayes Classifier (Extended Version)

arXiv.org Machine Learning

Adversarial robustness is a critical property in a variety of modern machine learning applications. While it has been the subject of several recent theoretical studies, many important questions related to adversarial robustness are still open. In this work, we study a fundamental question regarding Bayes optimality for adversarial robustness. We provide general sufficient conditions under which the existence of a Bayes optimal classifier can be guaranteed for adversarial robustness. Our results can provide a useful tool for a subsequent study of surrogate losses in adversarial robustness and their consistency properties. This manuscript is the extended version of the paper On the Existence of the Adversarial Bayes Classifier published in NeurIPS (Awasthi et al., 2021b). The results of the original paper did not apply to some non-strictly convex norms. Here we extend our results to all possible norms.