Goto

Collaborating Authors

Results


Reinforcement Learning: An Introduction

#artificialintelligence

In 9 hours, Google's AlphaZero went from only knowing the rules of chess to beating the best models in the world. Chess has been studied by humans for over 1000 years, yet a reinforcement learning model was able to further our knowledge of the game in a negligible amount of time, using no prior knowledge aside from the game rules. No other machine learning field allows for such progress in this problem. Today, similar models by Google are being used in a wide variety of fields like predicting and detecting early signs of life-changing illnesses, improving text-to-speech systems, and more. Machine learning can be divided into 3 main paradigms.


Reinforcement Learning: An Introduction

#artificialintelligence

In 9 hours, Google's AlphaZero went from only knowing the rules of chess to beating the best models in the world. Chess has been studied by humans for over 1000 years, yet a reinforcement learning model was able to further our knowledge of the game in a negligible amount of time, using no prior knowledge aside from the game rules. No other machine learning field allows for such progress in this problem. Today, similar models by Google are being used in a wide variety of fields like predicting and detecting early signs of life-changing illnesses, improving text-to-speech systems, and more. Machine learning can be divided into 3 main paradigms.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.


Modeling Strong and Human-Like Gameplay with KL-Regularized Search

arXiv.org Artificial Intelligence

We consider the task of building strong but human-like policies in multi-agent decision-making problems, given examples of human behavior. Imitation learning is effective at predicting human actions but may not match the strength of expert humans, while self-play learning and search techniques (e.g. AlphaZero) lead to strong performance but may produce policies that are difficult for humans to understand and coordinate with. We show in chess and Go that regularizing search policies based on the KL divergence from an imitation-learned policy by applying Monte Carlo tree search produces policies that have higher human prediction accuracy and are stronger than the imitation policy. We then introduce a novel regret minimization algorithm that is regularized based on the KL divergence from an imitation-learned policy, and show that applying this algorithm to no-press Diplomacy yields a policy that maintains the same human prediction accuracy as imitation learning while being substantially stronger.


A brief history of AI: how to prevent another winter (a critical review)

arXiv.org Artificial Intelligence

The field of artificial intelligence (AI), regarded as one of the most enigmatic areas of science, has witnessed exponential growth in the past decade including a remarkably wide array of applications, having already impacted our everyday lives. Advances in computing power and the design of sophisticated AI algorithms have enabled computers to outperform humans in a variety of tasks, especially in the areas of computer vision and speech recognition. Yet, AI's path has never been smooth, having essentially fallen apart twice in its lifetime ('winters' of AI), both after periods of popular success ('summers' of AI). We provide a brief rundown of AI's evolution over the course of decades, highlighting its crucial moments and major turning points from inception to the present. In doing so, we attempt to learn, anticipate the future, and discuss what steps may be taken to prevent another 'winter'.


Dive into Deep Learning

arXiv.org Artificial Intelligence

Just a few years ago, there were no legions of deep learning scientists developing intelligent products and services at major companies and startups. When the youngest among us (the authors) entered the field, machine learning did not command headlines in daily newspapers. Our parents had no idea what machine learning was, let alone why we might prefer it to a career in medicine or law. Machine learning was a forward-looking academic discipline with a narrow set of real-world applications. And those applications, e.g., speech recognition and computer vision, required so much domain knowledge that they were often regarded as separate areas entirely for which machine learning was one small component. Neural networks then, the antecedents of the deep learning models that we focus on in this book, were regarded as outmoded tools. In just the past five years, deep learning has taken the world by surprise, driving rapid progress in fields as diverse as computer vision, natural language processing, automatic speech recognition, reinforcement learning, and statistical modeling. With these advances in hand, we can now build cars that drive themselves with more autonomy than ever before (and less autonomy than some companies might have you believe), smart reply systems that automatically draft the most mundane emails, helping people dig out from oppressively large inboxes, and software agents that dominate the worldʼs best humans at board games like Go, a feat once thought to be decades away. Already, these tools exert ever-wider impacts on industry and society, changing the way movies are made, diseases are diagnosed, and playing a growing role in basic sciences--from astrophysics to biology.


Combining Off and On-Policy Training in Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

The combination of deep learning and Monte Carlo Tree Search (MCTS) has shown to be effective in various domains, such as board and video games. AlphaGo represented a significant step forward in our ability to learn complex board games, and it was rapidly followed by significant advances, such as AlphaGo Zero and AlphaZero. Recently, MuZero demonstrated that it is possible to master both Atari games and board games by directly learning a model of the environment, which is then used with MCTS to decide what move to play in each position. During tree search, the algorithm simulates games by exploring several possible moves and then picks the action that corresponds to the most promising trajectory. When training, limited use is made of these simulated games since none of their trajectories are directly used as training examples. Even if we consider that not all trajectories from simulated games are useful, there are thousands of potentially useful trajectories that are discarded. Using information from these trajectories would provide more training data, more quickly, leading to faster convergence and higher sample efficiency. Recent work introduced an off-policy value target for AlphaZero that uses data from simulated games. In this work, we propose a way to obtain off-policy targets using data from simulated games in MuZero. We combine these off-policy targets with the on-policy targets already used in MuZero in several ways, and study the impact of these targets and their combinations in three environments with distinct characteristics. When used in the right combinations, our results show that these targets speed up the training process and lead to faster convergence and higher rewards than the ones obtained by MuZero.


Learning to Resolve Alliance Dilemmas in Many-Player Zero-Sum Games

arXiv.org Machine Learning

Zero-sum games have long guided artificial intelligence research, since they possess both a rich strategy space of best-responses and a clear evaluation metric. What's more, competition is a vital mechanism in many real-world multi-agent systems capable of generating intelligent innovations: Darwinian evolution, the market economy and the AlphaZero algorithm, to name a few. In two-player zero-sum games, the challenge is usually viewed as finding Nash equilibrium strategies, safeguarding against exploitation regardless of the opponent. While this captures the intricacies of chess or Go, it avoids the notion of cooperation with co-players, a hallmark of the major transitions leading from unicellular organisms to human civilization. Beyond two players, alliance formation often confers an advantage; however this requires trust, namely the promise of mutual cooperation in the face of incentives to defect. Successful play therefore requires adaptation to co-players rather than the pursuit of non-exploitability. Here we argue that a systematic study of many-player zero-sum games is a crucial element of artificial intelligence research. Using symmetric zero-sum matrix games, we demonstrate formally that alliance formation may be seen as a social dilemma, and empirically that na\"ive multi-agent reinforcement learning therefore fails to form alliances. We introduce a toy model of economic competition, and show how reinforcement learning may be augmented with a peer-to-peer contract mechanism to discover and enforce alliances. Finally, we generalize our agent model to incorporate temporally-extended contracts, presenting opportunities for further work.


The Hanabi Challenge: A New Frontier for AI Research

arXiv.org Machine Learning

From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay and imperfect information in a two to five player setting. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques capable of imbuing artificial agents with such theory of mind will not only be crucial for their success in Hanabi, but also in broader collaborative efforts, and especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.