Goto

Collaborating Authors

Results


Optimizing carbon tax for decentralized electricity markets using an agent-based model

arXiv.org Artificial Intelligence

Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology. A way to achieve this is to decarbonize the electricity grid. However, further efforts must be made in other fields such as transport and heating for full decarbonization. This would reduce carbon emissions due to electricity generation, and also help to decarbonize other sources such as automotive and heating by enabling a low-carbon alternative. Carbon taxes have been shown to be an efficient way to aid in this transition. In this paper, we demonstrate how to to find optimal carbon tax policies through a genetic algorithm approach, using the electricity market agent-based model ElecSim. To achieve this, we use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix. We demonstrate that it is possible to find a range of carbon taxes to suit differing objectives. Our results show that we are able to minimize electricity cost to below \textsterling10/MWh as well as carbon intensity to zero in every case. In terms of the optimal carbon tax strategy, we found that an increasing strategy between 2020 and 2035 was preferable. Each of the Pareto-front optimal tax strategies are at least above \textsterling81/tCO2 for every year. The mean carbon tax strategy was \textsterling240/tCO2.


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.