Goto

Collaborating Authors

New Finding


Artificial Intelligence Computing Using Networks of Tiny Nanomagnets

#artificialintelligence

Researchers have demonstrated that artificial intelligence may be performed using small nanomagnets that interact like neurons in the brain. Researchers have shown it is possible to perform artificial intelligence using tiny nanomagnets that interact like neurons in the brain. The new technology, developed by a team led by Imperial College London researchers, could significantly reduce the energy cost of artificial intelligence (AI), which is currently doubling globally every 3.5 months. In a paper published today (May 5, 2022) in the journal Nature Nanotechnology, the international team has produced the first proof that networks of nanomagnets can be used to perform AI-like processing. The researchers showed nanomagnets can be used for'time-series prediction' tasks, such as predicting and regulating insulin levels in diabetic patients.


Predict Ads Click - Practice Data Analysis and Logistic Regression Prediction - Projects Based Learning

#artificialintelligence

In this project we will be working with a data set, indicating whether or not a particular internet user clicked on an Advertisement. We will try to create a model that will predict whether or not they will click on an ad based off the features of that user. Welcome to this project on predict Ads Click in Apache Spark Machine Learning using Databricks platform community edition server which allows you to execute your spark code, free of cost on their server just by registering through email id. In this project, we explore Apache Spark and Machine Learning on the Databricks platform. I am a firm believer that the best way to learn is by doing.


#ICLR2022 invited talk round-up 2: Beyond interpretability

AIHub

In the second of our round-ups of the invited talks at the International Conference on Learning Representations (ICLR) we focus on the presentation by Been Kim. Been Kim's research focusses on interpretability and explanability of AI models. In this presentation she talked about work towards developing a language to communicate with AI systems. The ultimate goal is that we would be able to query an algorithm as to why a particular decision was made, and it would be able to provide us with an explanation. To illustrate this point, Been used the example of AlphaGo, and the famous match against world champion Lee Sedol. At move 37 in one of the games, AlphaGo produced what commentators described as a "very strange move" that turned the course of the game.


Rapid adaptation of deep learning teaches drones to survive any weather

#artificialintelligence

To be truly useful, drones--that is, autonomous flying vehicles--will need to learn to navigate real-world weather and wind conditions. Right now, drones are either flown under controlled conditions, with no wind, or are operated by humans using remote controls. Drones have been taught to fly in formation in the open skies, but those flights are usually conducted under ideal conditions and circumstances. However, for drones to autonomously perform necessary but quotidian tasks, such as delivering packages or airlifting injured drivers from a traffic accident, drones must be able to adapt to wind conditions in real time--rolling with the punches, meteorologically speaking. To face this challenge, a team of engineers from Caltech has developed Neural-Fly, a deep-learning method that can help drones cope with new and unknown wind conditions in real time just by updating a few key parameters.


Deep reinforcement learning for self-tuning laser source of dissipative solitons - Scientific Reports

#artificialintelligence

Increasing complexity of modern laser systems, mostly originated from the nonlinear dynamics of radiation, makes control of their operation more and more challenging, calling for development of new approaches in laser engineering. Machine learning methods, providing proven tools for identification, control, and data analytics of various complex systems, have been recently applied to mode-locked fiber lasers with the special focus on three key areas: self-starting, system optimization and characterization. However, the development of the machine learning algorithms for a particular laser system, while being an interesting research problem, is a demanding task requiring arduous efforts and tuning a large number of hyper-parameters in the laboratory arrangements. It is not obvious that this learning can be smoothly transferred to systems that differ from the specific laser used for the algorithm development by design or by varying environmental parameters. Here we demonstrate that a deep reinforcement learning (DRL) approach, based on trials and errors and sequential decisions, can be successfully used for control of the generation of dissipative solitons in mode-locked fiber laser system. We have shown the capability of deep Q-learning algorithm to generalize knowledge about the laser system in order to find conditions for stable pulse generation. Region of stable generation was transformed by changing the pumping power of the laser cavity, while tunable spectral filter was used as a control tool. Deep Q-learning algorithm is suited to learn the trajectory of adjusting spectral filter parameters to stable pulsed regime relying on the state of output radiation. Our results confirm the potential of deep reinforcement learning algorithm to control a nonlinear laser system with a feed-back. We also demonstrate that fiber mode-locked laser systems generating data at high speed present a fruitful photonic test-beds for various machine learning concepts based on large datasets.


La veille de la cybersécurité

#artificialintelligence

Artificial intelligence (AI) is showing promising results in detecting breast cancer which may otherwise have been missed by radiologists, the largest study of its kind has found. Researchers in Germany discovered that AI can correctly detect interval breast cancers, which develop in between routine screening rounds (usually 24 months in many countries) and can be missed and diagnosed as a false negative result. In 2020, there were 2.3 million women diagnosed with breast cancer and 685 000 deaths globally, according to the World Health Organization (WHO). The peer-reviewed study showed approximately 16 per cent of interval cancers are probably visible during a previous screening while one in five may be too subtle to the human eye and can be missed by radiologists, which is known as'minimal signs'. The findings present an opportunity to detect more cancers at screening with AI, which may help detect breast cancer earlier.


'Nanomagnetic' computing can provide low-energy AI

#artificialintelligence

The new method, developed by a team led by Imperial College London researchers, could slash the energy cost of artificial intelligence (AI), which is currently doubling globally every 3.5 months. In a paper published today in Nature Nanotechnology, the international team have produced the first proof that networks of nanomagnets can be used to perform AI-like processing. The researchers showed nanomagnets can be used for'time-series prediction' tasks, such as predicting and regulating insulin levels in diabetic patients. Artificial intelligence that uses'neural networks' aims to replicate the way parts of the brain work, where neurons talk to each other to process and retain information. A lot of the maths used to power neural networks was originally invented by physicists to describe the way magnets interact, but at the time it was too difficult to use magnets directly as researchers didn't know how to put data in and get information out.


Watch a swarm of drones autonomously track a human through a dense forest

#artificialintelligence

Scientists from China's Zhejiang University have unveiled a drone swarm capable of navigating through a dense bamboo forest without human guidance. The group of 10 palm-sized drones communicate with one another to stay in formation, sharing data collected by on-board depth-sensing cameras to map their surroundings. This method means that if the path in front of one drone is blocked, it can use information collected by its neighbors to plot a new route. The researchers note that this technique can also be used by the swarm to track a human walking through the same environment. If one drone loses sight of the target, others are able to pick up the trail.


Elon Musk's Neuralink rival Synchron begins human trials of brain implant

Daily Mail - Science & tech

Elon Musk's Neuralink rival Synchron has begun human trials of its brain implant that lets the wearer control a computer using thought alone. The firm's Stentrode brain implant, about the size of a paperclip, will be implanted in six patients in New York and Pittsburgh who have severe paralysis. Stentrode will let patients control digital devices just by thinking and give them back the ability to perform daily tasks, including texting, emailing and shopping online. Although the implant has already been implanted and tested in Australian patients, the new clinical trial marks the first time it will be tested in the US. If successful, the Stentrode brain implant could be sold as a commercial product aimed at paralysis patients to regain their independence and quality of life.


Using machine-learning to distinguish antibody targets

AIHub

The virus's spike proteins (purple) are a key antibody target, with some antibodies attaching to the top (darker purple) and others to the stem (paler zone). A new study shows that it is possible to use the genetic sequences of a person's antibodies to predict what pathogens those antibodies will target. "Our research is in a very early stage, but this proof-of-concept study shows that we can use machine learning to connect the sequence of an antibody to its function," said Nicholas Wu, a professor of biochemistry at the University of Illinois Urbana-Champaign who led the research with biochemistry PhD student Yiquan Wang; and Meng Yuan, a staff scientist at Scripps Research in La Jolla, California. With enough data, scientists should be able to predict not only the virus an antibody will attack, but which features on the pathogen the antibody binds to, Wu said. For example, an antibody may attach to different parts of the spike protein on the SARS-CoV-2 virus.