Goto

Collaborating Authors

Results


Reinforcement Learning with Python Explained for Beginners

#artificialintelligence

Reinforcement Learning (RL) possesses immense potential and is doubtless one of the most dynamic and stimulating fields of research in Artificial Intelligence. RL is considered as a game-changer in Data Science, particularly after observing the winnings of AI agents AlphaGo Zero and OpenAI Five against top human champions. However, RL is not restricted to games. The progress in Reinforcement Learning, especially during the last few years, has been sensational. RL is everywhere now, ranging from resource management to chemistry, from healthcare to finance, and from Recommender Systems to more advanced applications in stock prediction.


8 Best Free Resources To Learn Deep Reinforcement Learning Using TensorFlow

#artificialintelligence

With the success of DeepMind's AlphaGo system defeating the world Go champion, reinforcement learning has achieved significant attention among researchers and developers. Deep reinforcement learning has become one of the most significant techniques in AI that is also being used by the researchers in order to attain artificial general intelligence. Below here is a list of 10 best free resources, in no particular order to learn deep reinforcement learning using TensorFlow. About: This tutorial "Introduction to RL and Deep Q Networks" is provided by the developers at TensorFlow. The topics include an introduction to deep reinforcement learning, the Cartpole Environment, introduction to DQN agent, Q-learning, Deep Q-Learning, DQN on Cartpole in TF-Agents and more.


Applied Machine Learning for Games: A Graduate School Course

arXiv.org Artificial Intelligence

The game industry is moving into an era where old-style game engines are being replaced by re-engineered systems with embedded machine learning technologies for the operation, analysis and understanding of game play. In this paper, we describe our machine learning course designed for graduate students interested in applying recent advances of deep learning and reinforcement learning towards gaming. This course serves as a bridge to foster interdisciplinary collaboration among graduate schools and does not require prior experience designing or building games. Graduate students enrolled in this course apply different fields of machine learning techniques such as computer vision, natural language processing, computer graphics, human computer interaction, robotics and data analysis to solve open challenges in gaming. Student projects cover use-cases such as training AI-bots in gaming benchmark environments and competitions, understanding human decision patterns in gaming, and creating intelligent non-playable characters or environments to foster engaging gameplay. Projects demos can help students open doors for an industry career, aim for publications, or lay the foundations of a future product. Our students gained hands-on experience in applying state of the art machine learning techniques to solve real-life problems in gaming.


Natural Language Processing (NLP) in Python for Beginners

#artificialintelligence

Created by Laxmi Kant KGP Talkie Students also bought Unsupervised Machine Learning Hidden Markov Models in Python Machine Learning and AI: Support Vector Machines in Python Cutting-Edge AI: Deep Reinforcement Learning in Python Ensemble Machine Learning in Python: Random Forest, AdaBoost Deep Learning: Advanced Computer Vision (GANs, SSD, More!) Unsupervised Deep Learning in Python Preview this course GET COUPON CODE Description Welcome to KGP Talkie's Natural Language Processing course. It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We Learn Spacy and NLTK in details and we will also explore the uses of NLP in real-life. This course covers the basics of NLP to advance topics like word2vec, GloVe. In this course, we will start from level 0 to the advanced level.


Advanced AI: Deep Reinforcement Learning in Python

#artificialintelligence

This course is all about the application of deep learning and neural networks to reinforcement learning. If you've taken my first reinforcement learning class, then you know that reinforcement learning is on the bleeding edge of what we can do with AI. Specifically, the combination of deep learning with reinforcement learning has led to AlphaGo beating a world champion in the strategy game Go, it has led to self-driving cars, and it has led to machines that can play video games at a superhuman level. Reinforcement learning has been around since the 70s but none of this has been possible until now. The world is changing at a very fast pace.


Artificial Intelligence: Reinforcement Learning in Python

#artificialintelligence

Online Courses Udemy - Complete guide to Reinforcement Learning, with Stock Trading and Online Advertising Applications BESTSELLER Created by Lazy Programmer Team, Lazy Programmer Inc English [Auto-generated], French [Auto-generated], 4 more Students also bought Data Science: Natural Language Processing (NLP) in Python Natural Language Processing with Deep Learning in Python Deep Learning Prerequisites: Linear Regression in Python Cluster Analysis and Unsupervised Machine Learning in Python Complete Python Bootcamp: Go from zero to hero in Python3 Preview this course GET COUPON CODE Description When people talk about artificial intelligence, they usually don't mean supervised and unsupervised machine learning. These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level. Reinforcement learning has recently become popular for doing all of that and more. Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn't been until recently that we've been able to observe first hand the amazing results that are possible. In 2016 we saw Google's AlphaGo beat the world Champion in Go.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Preview this course - GET COUPON CODE Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will cover must-know topics in financial engineering, such as: Exploratory data analysis, significance testing, correlations, alpha and beta Time series analysis, simple moving average, exponentially-weighted moving average Holt-Winters exponential smoothing model Efficient Market Hypothesis Random Walk Hypothesis Time series forecasting ("stock price prediction") Modern portfolio theory Efficient frontier / Markowitz bullet Mean-variance optimization Maximizing the Sharpe ratio Convex optimization with Linear Programming and Quadratic Programming Capital Asset Pricing Model (CAPM) Algorithmic trading (VIP only) Statistical Factor Models (VIP only) Regime Detection with Hidden Markov Models (VIP only) In addition, we will look at various non-traditional techniques which stem purely from the field of machine learning and artificial intelligence, such as: Classification models Unsupervised learning Reinforcement learning and Q-learning ***VIP-only sections (get it while it lasts!) You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


A Beginner's Guide To Machine Learning with Unity

#artificialintelligence

What if you could build a character that could learn while it played? Think about the types of gameplay you could develop where the enemies started to outsmart the player. This is what machine learning in games is all about. In this course, we will discover the fascinating world of artificial intelligence beyond the simple stuff and examine the increasingly popular domain of machines that learn to think for themselves. In this course, Penny introduces the popular machine learning techniques of genetic algorithms and neural networks using her internationally acclaimed teaching style and knowledge from a Ph.D in game character AI and over 25 years experience working with games and computer graphics.


Data Science: Supervised Machine Learning in Python

#artificialintelligence

Online Courses Udemy - Full Guide to Implementing Classic Machine Learning Algorithms in Python and with Sci-Kit Learn Created by Lazy Programmer Inc English [Auto-generated], Spanish [Auto-generated] Students also bought Bayesian Machine Learning in Python: A/B Testing The Complete Python Course Learn Python by Doing Complete Python Developer in 2020: Zero to Mastery Artificial Intelligence: Reinforcement Learning in Python Natural Language Processing with Deep Learning in Python Preview this course GET COUPON CODE Description In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


Machine Learning Practical: 6 Real-World Applications

#artificialintelligence

Free Coupon Discount - Machine Learning Practical: 6 Real-World Applications, Machine Learning - Get Your Hands Dirty by Solving Real Industry Challenges with Python Created by Kirill Eremenko, Hadelin de Ponteves, Dr. Ryan Ahmed, Ph.D., MBA, SuperDataScience Team, Rony Sulca Students also bought Deep Learning: Advanced Computer Vision (GANs, SSD, More!) Deep Learning: GANs and Variational Autoencoders Artificial Intelligence: Reinforcement Learning in Python Natural Language Processing with Deep Learning in Python Advanced AI: Deep Reinforcement Learning in Python Data Science: Natural Language Processing (NLP) in Python Preview this Udemy Course GET COUPON CODE Description So you know the theory of Machine Learning and know how to create your first algorithms. There are tons of courses out there about the underlying theory of Machine Learning which don't go any deeper – into the applications. This course is not one of them. Are you ready to apply all of the theory and knowledge to real life Machine Learning challenges? We gathered best industry professionals with tons of completed projects behind.