Goto

Collaborating Authors

Kanto


AI has remastered Rick Astley's 'Never Gonna Give You Up' in glorious 4K

Engadget

Word of warning, prepare to be rickrolled like you've never been rickrolled in the past. Thanks to AI software, you can now troll your friends with Rick Astley's "Never Gonna Give You Up" in crisp UHD. CNET spotted the video, which was uploaded by YouTube user Revideo at the end of January only to be recently discovered by the internet at large this week. Revideo said they used Topaz Video Enhance, an AI-powered program for upscaling video, to remaster the clip in 4K and RIFE (Flowframes) to smooth it out to 60 frames per second. We've seen other people like Denis Shiryaev use similar software to update an 1896 silent film and a tour of Tokyo from before the First World War.


The Nikkei is back at 30,000. But it's a whole different world.

The Japan Times

The last time stocks in Tokyo were this high, things were a little different. Orders now silently processed in milliseconds were shouted across smoky open outcry trading floors. Yuriko Koike, now Tokyo's governor, was a fresh-faced TV presenter on the country's leading business news show. The U.S. fretted over "Japan as number one," while China was an economic backwater. That's how long it's been since the 225-issue Nikkei stock average of the Tokyo Stock Exchange passed 30,000, an event which first took place in December 1988.


AI app allows banks to screen loan applicants' face and voice to determine their 'trustworthiness'

Daily Mail - Science & tech

People tend to make snap judgments on each other in a single look and now an algorithm claims to have the same ability to determine trustworthiness for obtaining a loan in just two minutes. Tokyo-based DeepScore unveiled its facial and voice recognition app last week at the Consumer Electronics Show that is touted as a'next-generation scoring engine' for loan lenders, insurance companies and other financial institutions. While a customer answers 10 question, the AI analyzes their face and voice to calculate a'True Score' that can be help companies with the decision to deny or approve. DeepScore says its AI can determine lies with 70 percent accuracy and a 30 percent false negative rate, and will alert companies that fees need to be increased if dishonesty is detected. However, scientists raise concerns about bias saying the app is likely to discriminate against people with tics or anxiety, resulting in these individuals not receiving necessary funds or coverage, Motherboard reports.


Japan eyes use of robots to boost COVID-19 testing as Olympics loom

The Japan Times

Health minister Norihisa Tamura watched a demonstration Tuesday of a prototype automated COVID-19 testing machine that uses a robotic arm to take a sample from a person's nose and can deliver the results in about 80 minutes. The robot system, built by Kawasaki Heavy Industries Inc., fits in a standard shipping container that can be transported by truck and set up at stadiums, theme parks and other mass gatherings, the company said. "Looking at the global trend, we need to increase the number of people receiving tests, and the demand for preventive testing is rising," Tamura told reporters at the demonstration. Prime Minister Yoshihide Suga's administration has attracted criticism for Japan's paucity of testing. His government is under pressure to show it has the pandemic under control with fewer than 200 days until the start of the Summer Olympics in Tokyo -- already delayed by a year -- and vaccinations yet to start.


Mapping the global threat of land subsidence

Science

Subsidence, the lowering of Earth's land surface, is a potentially destructive hazard that can be caused by a wide range of natural or anthropogenic triggers but mainly results from solid or fluid mobilization underground. Subsidence due to groundwater depletion ([ 1 ][1]) is a slow and gradual process that develops on large time scales (months to years), producing progressive loss of land elevation (centimeters to decimeters per year) typically over very large areas (tens to thousands of square kilometers) and variably affects urban and agricultural areas worldwide. Subsidence permanently reduces aquifer-system storage capacity, causes earth fissures, damages buildings and civil infrastructure, and increases flood susceptibility and risk. During the next decades, global population and economic growth will continue to increase groundwater demand and accompanying groundwater depletion ([ 2 ][2]) and, when exacerbated by droughts ([ 3 ][3]), will probably increase land subsidence occurrence and related damages or impacts. To raise awareness and inform decision-making, we evaluate potential global subsidence due to groundwater depletion, a key first step toward formulating effective land-subsidence policies that are lacking in most countries worldwide. A large-scale systematic literature review reveals that during the past century, land subsidence due to groundwater depletion occurred at 200 locations in 34 countries [see supplementary materials (SM)]. However, subsidence extent is only known for one-third of these records, information on the impacts is scarce, and mitigation measures were implemented only in a few locations. In China, widespread subsidence affects cities developed in the main sedimentary basins. In Indonesia, coastal subsidence in Jakarta is so severe that government authorities are planning to move the capital to the island of Borneo. In Japan, subsidence affected several cities during the 20th century, including more than 4 m of subsidence in Tokyo, before groundwater management practices mitigated further subsidence. Iran currently hosts some of the fastest-sinking cities in the world (25 cm year--1) because of unregulated groundwater pumping. In Europe, the greatest impact of subsidence occurs in the Netherlands, where subsidence is primarily responsible for placing 25% of the country below the mean sea level and increasing the flooding risk. Subsidence in the Po River Plain in Italy started during the second half of the 20th century and currently threatens 30% of the Italian population, contributing to recurrent coastal flooding during extreme high tides in Venice. In North America, intense groundwater depletion triggers subsidence from California's Central Valley, with as much as 9 m of subsidence in the past century, to the Atlantic and Gulf of Mexico coastal plains in the United States, where subsidence is increasing flooding risk. In México, subsidence rates are among the highest worldwide (as much as 30 cm year-1), affecting small structurally controlled intermontane basins where the main urban centers developed, causing an important but unaccounted economic impact. Spatial analysis of subsidence locations identified in our global database (see SM) reveals that subsidence has preferentially occurred in very flat areas where unconsolidated sediments accumulated in alluvial basins or coastal plains, and where urban or agricultural areas developed in temperate or arid climates characterized by prolonged dry periods. Land subsidence has generally occurred in water-stressed basins, where the combination of groundwater withdrawal and natural groundwater discharge outpaced groundwater recharge, resulting in groundwater storage losses, groundwater depletion, and compaction of susceptible aquifer systems. In the affected basins, land subsidence mainly occurred in highly populated areas, with half of documented occurrences in areas susceptible to flooding. In coastal zones, the combined effects of absolute sea-level rise and land subsidence contribute to relative sea-level rise ([ 4 ][4]). The contribution from land subsidence may exceed the contribution from absolute sea-level rise by a factor of 10 or more and could be especially critical for 21% of the geographic locations identified in our database, where land elevation is less than 1 m above the mean sea level. On the basis of the spatial analysis findings, a global model is proposed to combine the main variables influencing subsidence to identify environmental settings favoring land subsidence and the anthropogenic factors leading to groundwater depletion (see SM). Statistical analyses of lithology, land-surface slope, land cover, and Koppen-Geiger climate classes are used to predict global subsidence susceptibility at a spatial resolution of 1 km2. The probability of groundwater depletion is estimated by identifying urban and irrigated areas suffering water stress and where groundwater demand is high. The analyses do not consider subsidence magnitude and rate, owing to the lack of this information at a global scale. Hence, the combination of subsidence susceptibility and the probability of groundwater depletion is used to predict a “proxy” of subsidence hazard, which permits identification of exposed areas where the probability of land subsidence occurrence is high or very high. Even though these results do not necessarily translate to direct impacts or damages, they are useful for identifying potential subsidence areas where further local-scale analysis is necessary. T he comparison of our model predictions with an independent validation dataset reveals a 94% capability to distinguish between subsidence and nonsubsidence areas, according to the value of the area under the receiver operating characteristic curve (see SM). The global exposure to potential subsidence is evaluated by calculating the number of inhabitants living in potential subsidence areas, i.e., subsidence hazard proxy, and the equivalent gross domestic product (GDP). T his “proxy” of exposed assets is calculated assuming that GDP per capita is homogeneous within each country. Finally, the evolution of potential global subsidence and the related exposure is predicted for 2040 for a global change scenario based on steady population growth and increasing greenhouse gas emissions (Shared Socioeconomic Pathways 2, Representative Concentration Pathway 8.5), which accounts for the greatest sea-level rise projections. ![Figure][5] Potential global subsidence The color scale indicates the probability intervals classified from very low (VL) to very high (VH), for every 30-arcsec resolution pixel (1 km by 1 km at the Equator). The white hatched polygons indicate countries where groundwater data is unavailable, and the potential subsidence only includes information on the susceptibility. See maps of other regions in supplementary materials. GRAPHIC: N. DESAI/ SCIENCE Our results suggest that potential subsidence threatens 12 million km2 (8%) of the global land surface with a probability greater than 50% (MH to VH in the figure). Potential subsidence areas are concentrated in and near densely urban and irrigated areas with high water stress and high groundwater demand, overlying some of the largest and most depleted aquifer systems ([ 5 ][6]) in Asia (e.g., North China Plain) and North America (e.g., Gulf of Mexico coastal plain); coastal and river delta areas worldwide (e.g., Vietnam, Egypt, or the Netherlands); and inland sedimentary basins of México, Iran, and the Mediterranean countries. Potential subsidence is lower in Africa, Australia, and South America, owing to the lower groundwater depletion ([ 6 ][7]). In central Africa, potential subsidence only includes information on the susceptibility, as groundwater depletion is unknown. In this region, subsidence susceptibility (see fig. S6) could be useful to prevent subsidence impacts on developing cities that during the next decades could rely more on the available groundwater resources. To evaluate the exposure to potential subsidence, we focus on areas where the potential subsidence probability is high or very high (see the figure). The cumulative potential subsidence area amounts to 2.2 million km2, or 1.6% of the land; includes 1.2 billion inhabitants, or 19% of the global population; and has an exposed GDP of US$ 8.19 trillion, or 12% of the global GDP. Hi gh-income countries account for 62% of the global exposed GDP but only 11% of the global exposed population, whereas low-income countries account for 54% of the global exposed population and 12% of the global exposed GDP. It is expected that the capability of low-income countries to implement the political, regulatory, and socioeconomic measures necessary to prevent and mitigate subsidence impact will be less than that for high-income countries. Potential subsidence threatens 484 million inhabitants living in flood-prone areas, 75% of whom live in fluvial areas and 25% of whom live near the coast. This number of threatened inhabitants corresponds to 50% of the global population exposed to flooding hazards according to previous estimates ([ 7 ][8]), demonstrating the importance of considering potential subsidence in global flooding risk analyses. Most of the global population exposed to potential subsidence live in Asia (86%), which is about 10 times the combined exposed population of North America and Europe (9%). The results indicate that 97% of the exposed global population is concentrated in 30 countries (see SM). India and China share the top two rankings of potential subsidence in terms of spatial extent and exposed population. Egypt and the Netherlands have the largest populations living in potential subsidence areas that are below the mean sea level. The greatest population densities in potential subsidence areas occur in Egypt and Indonesia, whereas the relative exposure per country, measured as the exposed population normalized by the total population, is greater than 30% for Egypt, Bangladesh, Netherlands, and Italy. The United States ranks first in terms of GDP exposed to potential subsidence, owing to its high GDP per capita. Combination of the aforementioned metrics permits derivation of a potential subsidence index ranking (see SM). Seven of the first ten ranked countries have the greatest subsidence impact, accounting for the greatest amount of reported damages (Netherlands, China, USA, Japan, Indonesia, México and Italy). During this century, climate change will cause serious impacts on the world's water resources through sea-level rise, more frequent and severe floods and droughts, changes in the mean value and mode of precipitation (rain versus snow), and increased evapotranspiration. Prolonged droughts will decrease groundwater recharge and increase groundwater depletion, intensifying subsidence. The global potential subsidence is predicted for 2040 using the same subsidence metrics and available global projections of water stress, water demand variations, climate, and population (see SM). Although predicted potential subsidence areas increase only by 7% globally, the threatened population is predicted to rise by 30%, affecting 1.6 billion inhabitants, 635 million of whom will be living in flood-prone areas. These changes will not be homogeneous. Between 2010 and 2040, the predicted population exposed to potential subsidence increases more than 80% in the Philippines, Iraq, Indonesia, México, Israel, Netherlands, Algeria, and Bangladesh. The increase will be moderate, less than 30%, for China, the United States, Italy, and Iran. Potential subsidence is forecasted to decrease in Japan and Germany, owing to effective groundwater management policies and population declines. Finally, potential subsidence is predicted to emerge in high-latitude northern countries like Canada and to increase in extent in Russia or Hungary, where climate change will favor longer dry seasons. Further advancements in the global evaluation of subsidence can be made when a global historical database on subsidence rate, magnitude, and extent has been compiled, which could be largely sourced from continental monitoring of surface displacements using satellite radar imagery ([ 8 ][9]). Widespread continuous monitoring of subsidence will permit better evaluation of the potential impact of land subsidence, especially in countries like Indonesia, México, and Iran, where local studies revealed the highest subsidence rates worldwide, but the national dimension of subsidence is still unknown. Further research also is necessary to evaluate the cost of damage caused by current and historical subsidence worldwide. The combination of damage information with hazard estimates will permit improved assessments of potential loss and design of cost-effective countermeasures. Presently, annual subsidence costs are only published for China (US$ 1.5 billion) and the Netherlands (US$ 4.8 billion) ([ 9 ][10]). The greater subsidence costs in the Netherlands owe to the exposed population below the mean sea level and the large investments made to prevent flooding. Our model, which does not yet consider mitigation measures, likely overestimates potential subsidence exposure in the Netherlands and Japan, where groundwater management has effectively controlled subsidence over the past decades ([ 10 ][11]). Our results identify 1596 major cities, or about 22% of the world's 7343 major cities that are in potential subsidence areas, with 57% of these cities also located in flood-prone areas. Moreover, subsidence threatens 15 of the 20 major coastal cities ranked with the highest flood risk worldwide ([ 11 ][12]), where potential subsidence can help delimit areas in which flooding risk could be increased and mitigation measures are necessary. Overall, potential global subsidence results can be useful to better define the spatial extent of poorly documented subsidence occurrences, discover unknown subsiding areas, prevent potential subsidence impacts wherever groundwater depletion occurs, and better identify areas where subsidence could increase the flooding risk. In any of these scenarios, an effective land-subsidence policy should include systematic monitoring and modeling of exposed areas, evaluation of potential damages, and cost-benefit analyses permitting implementation of adequate mitigation or adaptation measures. These measures should consider groundwater regulation and strategic long-term measures, such as the development of alternative water supplies and the protection and (or) enhancement of natural or artificial recharge of aquifers. Considering that the potential subsidence may affect 635 million inhabitants living in flood-prone areas in 2040, it is of prime importance that potential subsidence is quantified and systematically included in flood risk analyses and related mitigation strategies. [science.sciencemag.org/content/371/6524/34/suppl/DC1][13] 1. [↵][14]1. D. L. Galloway, 2. T. J. Burbey , Hydrogeol. J. 19, 1459 (2011). [OpenUrl][15] 2. [↵][16]1. J. S. Famiglietti , Nat. Clim. Chang. 4, 945 (2014). [OpenUrl][17] 3. [↵][18]1. K. E. Trenberth , Clim. Res. 47, 123 (2011). [OpenUrl][19][CrossRef][20][Web of Science][21] 4. [↵][22]1. J. P. M. Syvitski et al ., Nat. Geosci. 2, 681 (2009). [OpenUrl][23][CrossRef][24][Web of Science][25] 5. [↵][26]1. P. Döll, 2. H. Müller Schmied, 3. C. Schuh, 4. F. T. Portmann, 5. A. Eicker , Water Resour. Res. 50, 5698 (2014). [OpenUrl][27][CrossRef][28][PubMed][29] 6. [↵][30]1. R. G. Taylor et al ., Nat. Clim. Chang. 3, 322 (2013). [OpenUrl][31] 7. [↵][32]1. B. Jongman, 2. P. J. Ward, 3. J. C. J. H. Aerts , Glob. Environ. Change 22, 823 (2012). [OpenUrl][33] 8. [↵][34]1. R. Lanari et al ., Remote Sens. 12, 2961 (2020). [OpenUrl][35] 9. [↵][36]1. T. H. M. Bucx, 2. C. J. M. Van Ruiten, 3. G. Erkens, 4. G. De Lange , in Proceedings of the International Association of Hydrological Sciences 372, 485 (2015). [OpenUrl][37] 10. [↵][38]1. K. A. B. Jago-on et al ., Sci. Total Environ. 407, 3089 (2009). [OpenUrl][39][CrossRef][40][PubMed][41] 11. [↵][42]1. S. Hallegatte, 2. C. Green, 3. R. J. Nicholls, 4. J. Corfee-Morlot , Nat. Clim. Chang. 3, 802 (2013). [OpenUrl][43] 12. [↵][44]1. G. Herrera, 2. P. Ezquerro , Global Subsidence Maps, figshare (2020); 10.6084/m9.figshare.13312070. Acknowledgments: Four anonymous peer reviewers and S. E. Ingebritsen (U.S. Geological Survey) helped to improve the manuscript. Funding for this study was provided partly by the Spanish Research Agency (AQUARISK, PRX19/00065, TEC2017-85244-C2-1-P projects) and PRIMA RESERVOIR project, and by all the institutions represented in the Land Subsidence International Initiative from UNESCO. G.H.-G., P.E., R.T., M.B.-P, and J.L.-V. designed the study, performed the analysis, and wrote the initial manuscript with input from all other authors. R.M.M., E.C.-C., and M.R. advised on the susceptibility analysis. R.M.M., J.L., P.T., and G.E. advised on hazard analysis. D.C.-F., J.L., P.T., E.C.C., G.E., D.G., W.C.H., N.K., M.S., L.T., H.W., and S.Y. advised on global exposure analysis. R.T., M.B.P., R.M.M., J.L., P.T., W.-C.H., N.K., L.T., H.W., and S.Y. contributed essential data for the analysis. All the authors edited and revised the manuscript through the different reviews. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. The authors declare no competing interests. All data included in this study are available at figshare ([ 12 ][45]). [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: pending:yes [6]: #ref-5 [7]: #ref-6 [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #ref-10 [12]: #ref-11 [13]: http://science.sciencemag.org/content/371/6524/34/suppl/DC1 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DHydrogeol.%2BJ.%26rft.volume%253D19%26rft.spage%253D1459%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: #xref-ref-2-1 "View reference 2 in text" [17]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D4%26rft.spage%253D945%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: #xref-ref-3-1 "View reference 3 in text" [19]: {openurl}?query=rft.jtitle%253DClim.%2BRes.%26rft.volume%253D47%26rft.spage%253D123%26rft_id%253Dinfo%253Adoi%252F10.3354%252Fcr00953%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/external-ref?access_num=10.3354/cr00953&link_type=DOI [21]: /lookup/external-ref?access_num=000289207700014&link_type=ISI [22]: #xref-ref-4-1 "View reference 4 in text" [23]: {openurl}?query=rft.jtitle%253DNat.%2BGeosci.%26rft.volume%253D2%26rft.spage%253D681%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fngeo629%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/external-ref?access_num=10.1038/ngeo629&link_type=DOI [25]: /lookup/external-ref?access_num=000270355000011&link_type=ISI [26]: #xref-ref-5-1 "View reference 5 in text" [27]: {openurl}?query=rft.jtitle%253DWater%2BResour.%2BRes.%26rft.volume%253D50%26rft.spage%253D5698%26rft_id%253Dinfo%253Adoi%252F10.1002%252F2014WR015595%26rft_id%253Dinfo%253Apmid%252F32020988%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [28]: /lookup/external-ref?access_num=10.1002/2014WR015595&link_type=DOI [29]: /lookup/external-ref?access_num=32020988&link_type=MED&atom=%2Fsci%2F371%2F6524%2F34.atom [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D3%26rft.spage%253D322%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: #xref-ref-7-1 "View reference 7 in text" [33]: {openurl}?query=rft.jtitle%253DGlob.%2BEnviron.%2BChange%26rft.volume%253D22%26rft.spage%253D823%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: #xref-ref-8-1 "View reference 8 in text" [35]: {openurl}?query=rft.jtitle%253DRemote%2BSens.%26rft.volume%253D12%26rft.spage%253D2961%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: #xref-ref-9-1 "View reference 9 in text" [37]: {openurl}?query=rft.jtitle%253DProceedings%2Bof%2Bthe%2BInternational%2BAssociation%2Bof%2BHydrological%2BSciences%26rft.volume%253D372%26rft.spage%253D485%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-10-1 "View reference 10 in text" [39]: {openurl}?query=rft.jtitle%253DThe%2BScience%2Bof%2Bthe%2BTotal%2BEnvironment%26rft.stitle%253DThe%2BScience%2Bof%2Bthe%2BTotal%2BEnvironment%26rft.aulast%253DJago-On%26rft.auinit1%253DK.%2BA.%26rft.volume%253D407%26rft.issue%253D9%26rft.spage%253D3089%26rft.epage%253D3104%26rft.atitle%253DUrbanization%2Band%2Bsubsurface%2Benvironmental%2Bissues%253A%2Ban%2Battempt%2Bat%2BDPSIR%2Bmodel%2Bapplication%2Bin%2BAsian%2Bcities.%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.scitotenv.2008.08.004%26rft_id%253Dinfo%253Apmid%252F18922564%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: /lookup/external-ref?access_num=10.1016/j.scitotenv.2008.08.004&link_type=DOI [41]: /lookup/external-ref?access_num=18922564&link_type=MED&atom=%2Fsci%2F371%2F6524%2F34.atom [42]: #xref-ref-11-1 "View reference 11 in text" [43]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D3%26rft.spage%253D802%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: #xref-ref-12-1 "View reference 12 in text" [45]: #ref-12


AI, drones and 4K cameras: New tech boosts security systems in Japan

The Japan Times

An increasing variety of technologies such as artificial intelligence, drones and high-quality 4K video cameras is being introduced in the field of security amid a serious shortage of personnel in the field. A virtual "AI guard" developed by major Japanese security firm Secom Co. was tested at Ogikubo Hospital in Tokyo in late October. An animated character displayed on an electric panel at the hospital entrance takes visitors' temperatures and then welcomes those without fevers into the facility. The character has been programmed to respond verbally to basic inquiries and can tell visitors where the bathrooms are located and what time their buses will arrive. It is also able to make eye contact with visitors and lean down when approached by children or people in wheelchairs.


Playing Go with Darwin - Issue 94: Evolving

Nautilus

"I have lately been especially attending to Geograph. Distrib, & most splendid sport it is,--a grand game of chess with the world for a Board." In 1938, Yasunari Kawabata, a young journalist in Tokyo, covered the battle between master Honinbo Shusai and apprentice Minoru Kitani for ultimate authority in the board game Go. It was one of the lengthiest matches in the history of competitive gaming--six months. In his 1968 Nobel Prize-winning novel inspired by these events, The Master of Go, Kawabata wrote of the decisive moment when, "Black has greater thickness and Black territory was secure, and the time was at hand for Otake's [Kitani's pseudonym in the book] own characteristic turn to offensive, for gnawing into enemy formations at which he was so adept."


How to Build Technology that Feels Like a Friend

#artificialintelligence

Recently, I needed to book a lunch meeting. To help coordinate, I asked Amy to assist and cc'd her on the email. "Amy," I wrote, "please help us find a time to meet. Let's plan for sushi at Tokyo Express on Spear Street." Amy looked at my calendar, found an open time suitable for everyone invited, and booked the meeting.


SoftBank's Rocky Year Ends on a Winning Streak

WSJ.com: WSJD - Technology

TOKYO--For a year that started out with a share crash, a record loss and a global pandemic, 2020 is turning out to be very good for SoftBank Group Corp. The Japanese technology investor, best known for its $100 billion Vision Fund and its mercurial chief executive, Masayoshi Son, this week scored an estimated $11 billion paper gain when U.S. food-delivery company DoorDash Inc. went public. It was the latest in a series of wins as soaring tech stocks pushed up the value of many of SoftBank's holdings. Cashing in on another investment, SoftBank said Friday that it agreed to sell an 80% stake in Boston Dynamics, a company known for dog-like robots that can maneuver through rooms, to Hyundai Motor Group . The deal valued the robotics company at $1.1 billion.


'The Last of Us Part II' and 'Animal Crossing' take early wins: Winners, top moments from The Game Awards

USATODAY - Tech Top Stories

This story will continue to be updated. It's a big night for video games, where the top achievements will be honored at The Game Awards, which will be broadcast live online from Los Angeles, London and Tokyo. Nominated for the top award, Game of the Year, is "The Last Of Us Part II," "Hades," "The Ghost of Tsushima," "Animal Crossing: New Horizons," "Doom Eternal," and "Final Fantasy VII Remake." Among other games that raked in multiple nominations: the Sony PlayStation 4 exclusive "The Last Of Us Part II," released in June, earned the most (10). "Hades," a PC game also released for the Nintendo Switch in September, earned eight, while "The Ghost of Tsushima," released in July, got seven.