Collaborating Authors


A learning perspective on the emergence of abstractions: the curious case of phonemes Machine Learning

In the present paper we use a range of modeling techniques to investigate whether an abstract phone could emerge from exposure to speech sounds. We test two opposing principles regarding the development of language knowledge in linguistically untrained language users: Memory-Based Learning (MBL) and Error-Correction Learning (ECL). A process of generalization underlies the abstractions linguists operate with, and we probed whether MBL and ECL could give rise to a type of language knowledge that resembles linguistic abstractions. Each model was presented with a significant amount of pre-processed speech produced by one speaker. We assessed the consistency or stability of what the models have learned and their ability to give rise to abstract categories. Both types of models fare differently with regard to these tests. We show that ECL learning models can learn abstractions and that at least part of the phone inventory can be reliably identified from the input.

Grounding Artificial Intelligence in the Origins of Human Behavior Artificial Intelligence

Recent advances in Artificial Intelligence (AI) have revived the quest for agents able to acquire an open-ended repertoire of skills. However, although this ability is fundamentally related to the characteristics of human intelligence, research in this field rarely considers the processes that may have guided the emergence of complex cognitive capacities during the evolution of the species. Research in Human Behavioral Ecology (HBE) seeks to understand how the behaviors characterizing human nature can be conceived as adaptive responses to major changes in the structure of our ecological niche. In this paper, we propose a framework highlighting the role of environmental complexity in open-ended skill acquisition, grounded in major hypotheses from HBE and recent contributions in Reinforcement learning (RL). We use this framework to highlight fundamental links between the two disciplines, as well as to identify feedback loops that bootstrap ecological complexity and create promising research directions for AI researchers.

Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning Artificial Intelligence

We consider the problem of learning fair policies in (deep) cooperative multi-agent reinforcement learning (MARL). We formalize it in a principled way as the problem of optimizing a welfare function that explicitly encodes two important aspects of fairness: efficiency and equity. As a solution method, we propose a novel neural network architecture, which is composed of two sub-networks specifically designed for taking into account the two aspects of fairness. In experiments, we demonstrate the importance of the two sub-networks for fair optimization. Our overall approach is general as it can accommodate any (sub)differentiable welfare function. Therefore, it is compatible with various notions of fairness that have been proposed in the literature (e.g., lexicographic maximin, generalized Gini social welfare function, proportional fairness). Our solution method is generic and can be implemented in various MARL settings: centralized training and decentralized execution, or fully decentralized. Finally, we experimentally validate our approach in various domains and show that it can perform much better than previous methods.

Hindsight and Sequential Rationality of Correlated Play Artificial Intelligence

Driven by recent successes in two-player, zero-sum game solving and playing, artificial intelligence work on games has increasingly focused on algorithms that produce equilibrium-based strategies. However, this approach has been less effective at producing competent players in general-sum games or those with more than two players than in two-player, zero-sum games. An appealing alternative is to consider adaptive algorithms that ensure strong performance in hindsight relative to what could have been achieved with modified behavior. This approach also leads to a game-theoretic analysis, but in the correlated play that arises from joint learning dynamics rather than factored agent behavior at equilibrium. We develop and advocate for this hindsight rationality framing of learning in general sequential decision-making settings. To this end, we re-examine mediated equilibrium and deviation types in extensive-form games, thereby gaining a more complete understanding and resolving past misconceptions. We present a set of examples illustrating the distinct strengths and weaknesses of each type of equilibrium in the literature, and prove that no tractable concept subsumes all others. This line of inquiry culminates in the definition of the deviation and equilibrium classes that correspond to algorithms in the counterfactual regret minimization (CFR) family, relating them to all others in the literature. Examining CFR in greater detail further leads to a new recursive definition of rationality in correlated play that extends sequential rationality in a way that naturally applies to hindsight evaluation.

A Reinforcement Learning Formulation of the Lyapunov Optimization: Application to Edge Computing Systems with Queue Stability Artificial Intelligence

In this paper, a deep reinforcement learning (DRL)-based approach to the Lyapunov optimization is considered to minimize the time-average penalty while maintaining queue stability. A proper construction of state and action spaces is provided to form a proper Markov decision process (MDP) for the Lyapunov optimization. A condition for the reward function of reinforcement learning (RL) for queue stability is derived. Based on the analysis and practical RL with reward discounting, a class of reward functions is proposed for the DRL-based approach to the Lyapunov optimization. The proposed DRL-based approach to the Lyapunov optimization does not required complicated optimization at each time step and operates with general non-convex and discontinuous penalty functions. Hence, it provides an alternative to the conventional drift-plus-penalty (DPP) algorithm for the Lyapunov optimization. The proposed DRL-based approach is applied to resource allocation in edge computing systems with queue stability and numerical results demonstrate its successful operation.

Towards a 6G AI-Native Air Interface Artificial Intelligence

Each generation of cellular communication systems is marked by a defining disruptive technology of its time, such as orthogonal frequency division multiplexing (OFDM) for 4G or Massive multiple-input multiple-output (MIMO) for 5G. Since artificial intelligence (AI) is the defining technology of our time, it is natural to ask what role it could play for 6G. While it is clear that 6G must cater to the needs of large distributed learning systems, it is less certain if AI will play a defining role in the design of 6G itself. The goal of this article is to paint a vision of a new air interface which is partially designed by AI to enable optimized communication schemes for any hardware, radio environment, and application.

BeBold: Exploration Beyond the Boundary of Explored Regions Machine Learning

Efficient exploration under sparse rewards remains a key challenge in deep reinforcement learning. To guide exploration, previous work makes extensive use of intrinsic reward (IR). There are many heuristics for IR, including visitation counts, curiosity, and state-difference. In this paper, we analyze the pros and cons of each method and propose the regulated difference of inverse visitation counts as a simple but effective criterion for IR. The criterion helps the agent explore Beyond the Boundary of explored regions and mitigates common issues in count-based methods, such as short-sightedness and detachment. The resulting method, BeBold, solves the 12 most challenging procedurally-generated tasks in MiniGrid with just 120M environment steps, without any curriculum learning. In comparison, the previous SoTA only solves 50% of the tasks. BeBold also achieves SoTA on multiple tasks in NetHack, a popular rogue-like game that contains more challenging procedurally-generated environments.

Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes Machine Learning

We study reinforcement learning (RL) with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2020) and the learning agent has access to either an integration or a sampling oracle of the individual basis kernels. We propose a new Bernstein-type concentration inequality for self-normalized martingales for linear bandit problems with bounded noise. Based on the new inequality, we propose a new, computationally efficient algorithm with linear function approximation named $\text{UCRL-VTR}^{+}$ for the aforementioned linear mixture MDPs in the episodic undiscounted setting. We show that $\text{UCRL-VTR}^{+}$ attains an $\tilde O(dH\sqrt{T})$ regret where $d$ is the dimension of feature mapping, $H$ is the length of the episode and $T$ is the number of interactions with the MDP. We also prove a matching lower bound $\Omega(dH\sqrt{T})$ for this setting, which shows that $\text{UCRL-VTR}^{+}$ is minimax optimal up to logarithmic factors. In addition, we propose the $\text{UCLK}^{+}$ algorithm for the same family of MDPs under discounting and show that it attains an $\tilde O(d\sqrt{T}/(1-\gamma)^{1.5})$ regret, where $\gamma\in [0,1)$ is the discount factor. Our upper bound matches the lower bound $\Omega(d\sqrt{T}/(1-\gamma)^{1.5})$ proved in Zhou et al. (2020) up to logarithmic factors, suggesting that $\text{UCLK}^{+}$ is nearly minimax optimal. To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.

Combining Reinforcement Learning with Lin-Kernighan-Helsgaun Algorithm for the Traveling Salesman Problem Artificial Intelligence

We address the Traveling Salesman Problem (TSP), a famous NP-hard combinatorial optimization problem. And we propose a variable strategy reinforced approach, denoted as VSR-LKH, which combines three reinforcement learning methods (Q-learning, Sarsa and Monte Carlo) with the well-known TSP algorithm, called Lin-Kernighan-Helsgaun (LKH). VSR-LKH replaces the inflexible traversal operation in LKH, and lets the program learn to make choice at each search step by reinforcement learning. Experimental results on 111 TSP benchmarks from the TSPLIB with up to 85,900 cities demonstrate the excellent performance of the proposed method.

Learning Multi-Arm Manipulation Through Collaborative Teleoperation Artificial Intelligence

Imitation Learning (IL) is a powerful paradigm to teach robots to perform manipulation tasks by allowing them to learn from human demonstrations collected via teleoperation, but has mostly been limited to single-arm manipulation. However, many real-world tasks require multiple arms, such as lifting a heavy object or assembling a desk. Unfortunately, applying IL to multi-arm manipulation tasks has been challenging -- asking a human to control more than one robotic arm can impose significant cognitive burden and is often only possible for a maximum of two robot arms. To address these challenges, we present Multi-Arm RoboTurk (MART), a multi-user data collection platform that allows multiple remote users to simultaneously teleoperate a set of robotic arms and collect demonstrations for multi-arm tasks. Using MART, we collected demonstrations for five novel two and three-arm tasks from several geographically separated users. From our data we arrived at a critical insight: most multi-arm tasks do not require global coordination throughout its full duration, but only during specific moments. We show that learning from such data consequently presents challenges for centralized agents that directly attempt to model all robot actions simultaneously, and perform a comprehensive study of different policy architectures with varying levels of centralization on our tasks. Finally, we propose and evaluate a base-residual policy framework that allows trained policies to better adapt to the mixed coordination setting common in multi-arm manipulation, and show that a centralized policy augmented with a decentralized residual model outperforms all other models on our set of benchmark tasks. Additional results and videos at .