Goto

Collaborating Authors

Results


Efficient Policy Space Response Oracles

arXiv.org Artificial Intelligence

Policy Space Response Oracle method (PSRO) provides a general solution to Nash equilibrium in two-player zero-sum games but suffers from two problems: (1) the computation inefficiency due to consistently evaluating current populations by simulations; and (2) the exploration inefficiency due to learning best responses against a fixed meta-strategy at each iteration. In this work, we propose Efficient PSRO (EPSRO) that largely improves the efficiency of the above two steps. Central to our development is the newly-introduced subroutine of minimax optimization on unrestricted-restricted (URR) games. By solving URR at each step, one can evaluate the current game and compute the best response in one forward pass with no need for game simulations. Theoretically, we prove that the solution procedures of EPSRO offer a monotonic improvement on exploitability. Moreover, a desirable property of EPSRO is that it is parallelizable, this allows for efficient exploration in the policy space that induces behavioral diversity. We test EPSRO on three classes of games, and report a 50x speedup in wall-time, 10x data efficiency, and similar exploitability as existing PSRO methods on Kuhn and Leduc Poker games.


PRIMA: Planner-Reasoner Inside a Multi-task Reasoning Agent

arXiv.org Artificial Intelligence

We consider the problem of multi-task reasoning (MTR), where an agent can solve multiple tasks via (first-order) logic reasoning. This capability is essential for human-like intelligence due to its strong generalizability and simplicity for handling multiple tasks. However, a major challenge in developing effective MTR is the intrinsic conflict between reasoning capability and efficiency. An MTR-capable agent must master a large set of "skills" to tackle diverse tasks, but executing a particular task at the inference stage requires only a small subset of immediately relevant skills. How can we maintain broad reasoning capability and also efficient specific-task performance? To address this problem, we propose a Planner-Reasoner framework capable of state-of-the-art MTR capability and high efficiency. The Reasoner models shareable (first-order) logic deduction rules, from which the Planner selects a subset to compose into efficient reasoning paths. The entire model is trained in an end-to-end manner using deep reinforcement learning, and experimental studies over a variety of domains validate its effectiveness.


Computational-Statistical Gaps in Reinforcement Learning

arXiv.org Machine Learning

Reinforcement learning with function approximation has recently achieved tremendous results in applications with large state spaces. This empirical success has motivated a growing body of theoretical work proposing necessary and sufficient conditions under which efficient reinforcement learning is possible. From this line of work, a remarkably simple minimal sufficient condition has emerged for sample efficient reinforcement learning: MDPs with optimal value function $V^*$ and $Q^*$ linear in some known low-dimensional features. In this setting, recent works have designed sample efficient algorithms which require a number of samples polynomial in the feature dimension and independent of the size of state space. They however leave finding computationally efficient algorithms as future work and this is considered a major open problem in the community. In this work, we make progress on this open problem by presenting the first computational lower bound for RL with linear function approximation: unless NP=RP, no randomized polynomial time algorithm exists for deterministic transition MDPs with a constant number of actions and linear optimal value functions. To prove this, we show a reduction from Unique-Sat, where we convert a CNF formula into an MDP with deterministic transitions, constant number of actions and low dimensional linear optimal value functions. This result also exhibits the first computational-statistical gap in reinforcement learning with linear function approximation, as the underlying statistical problem is information-theoretically solvable with a polynomial number of queries, but no computationally efficient algorithm exists unless NP=RP. Finally, we also prove a quasi-polynomial time lower bound under the Randomized Exponential Time Hypothesis.


Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs

arXiv.org Artificial Intelligence

The importance of explainability in AI has become a pressing concern, for which several explainable AI (XAI) approaches have been recently proposed. However, most of the available XAI techniques are post-hoc methods, which however may be only partially reliable, as they do not reflect exactly the state of the original models. Thus, a more direct way for achieving XAI is through interpretable (also called glass-box) models. These models have been shown to obtain comparable (and, in some cases, better) performance with respect to black-boxes models in various tasks such as classification and reinforcement learning. However, they struggle when working with raw data, especially when the input dimensionality increases and the raw inputs alone do not give valuable insights on the decision-making process. Here, we propose to use end-to-end pipelines composed of multiple interpretable models co-optimized by means of evolutionary algorithms, that allows us to decompose the decision-making process into two parts: computing high-level features from raw data, and reasoning on the extracted high-level features. We test our approach in reinforcement learning environments from the Atari benchmark, where we obtain comparable results (with respect to black-box approaches) in settings without stochastic frame-skipping, while performance degrades in frame-skipping settings.


Reward is not enough: can we liberate AI from the reinforcement learning paradigm?

arXiv.org Artificial Intelligence

I present arguments against the hypothesis put forward by Silver, Singh, Precup, and Sutton ( https://www.sciencedirect.com/science/article/pii/S0004370221000862 ) : reward maximization is not enough to explain many activities associated with natural and artificial intelligence including knowledge, learning, perception, social intelligence, evolution, language, generalisation and imitation. I show such reductio ad lucrum has its intellectual origins in the political economy of Homo economicus and substantially overlaps with the radical version of behaviourism. I show why the reinforcement learning paradigm, despite its demonstrable usefulness in some practical application, is an incomplete framework for intelligence -- natural and artificial. Complexities of intelligent behaviour are not simply second-order complications on top of reward maximisation. This fact has profound implications for the development of practically usable, smart, safe and robust artificially intelligent agents.


Approximating Gradients for Differentiable Quality Diversity in Reinforcement Learning

arXiv.org Artificial Intelligence

Consider a walking agent that must adapt to damage. To approach this task, we can train a collection of policies and have the agent select a suitable policy when damaged. Training this collection may be viewed as a quality diversity (QD) optimization problem, where we search for solutions (policies) which maximize an objective (walking forward) while spanning a set of measures (measurable characteristics). Recent work shows that differentiable quality diversity (DQD) algorithms greatly accelerate QD optimization when exact gradients are available for the objective and measures. However, such gradients are typically unavailable in RL settings due to non-differentiable environments. To apply DQD in RL settings, we propose to approximate objective and measure gradients with evolution strategies and actor-critic methods. We develop two variants of the DQD algorithm CMA-MEGA, each with different gradient approximations, and evaluate them on four simulated walking tasks. One variant achieves comparable performance (QD score) with the state-of-the-art PGA-MAP-Elites in two tasks. The other variant performs comparably in all tasks but is less efficient than PGA-MAP-Elites in two tasks. These results provide insight into the limitations of CMA-MEGA in domains that require rigorous optimization of the objective and where exact gradients are unavailable.


Data-Driven Online Interactive Bidding Strategy for Demand Response

arXiv.org Artificial Intelligence

Demand response (DR), as one of the important energy resources in the future's grid, provides the services of peak shaving, enhancing the efficiency of renewable energy utilization with a short response period, and low cost. Various categories of DR are established, e.g. automated DR, incentive DR, emergency DR, and demand bidding. However, with the practical issue of the unawareness of residential and commercial consumers' utility models, the researches about demand bidding aggregator involved in the electricity market are just at the beginning stage. For this issue, the bidding price and bidding quantity are two required decision variables while considering the uncertainties due to the market and participants. In this paper, we determine the bidding and purchasing strategy simultaneously employing the smart meter data and functions. A two-agent deep deterministic policy gradient method is developed to optimize the decisions through learning historical bidding experiences. The online learning further utilizes the daily newest bidding experience attained to ensure trend tracing and self-adaptation. Two environment simulators are adopted for testifying the robustness of the model. The results prove that when facing diverse situations the proposed model can earn the optimal profit via off/online learning the bidding rules and robustly making the proper bid.


Reward-Respecting Subtasks for Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

To achieve the ambitious goals of artificial intelligence, reinforcement learning must include planning with a model of the world that is abstract in state and time. Deep learning has made progress in state abstraction, but, although the theory of time abstraction has been extensively developed based on the options framework, in practice options have rarely been used in planning. One reason for this is that the space of possible options is immense and the methods previously proposed for option discovery do not take into account how the option models will be used in planning. Options are typically discovered by posing subsidiary tasks such as reaching a bottleneck state, or maximizing a sensory signal other than the reward. Each subtask is solved to produce an option, and then a model of the option is learned and made available to the planning process. The subtasks proposed in most previous work ignore the reward on the original problem, whereas we propose subtasks that use the original reward plus a bonus based on a feature of the state at the time the option stops. We show that options and option models obtained from such reward-respecting subtasks are much more likely to be useful in planning and can be learned online and off-policy using existing learning algorithms. Reward respecting subtasks strongly constrain the space of options and thereby also provide a partial solution to the problem of option discovery. Finally, we show how the algorithms for learning values, policies, options, and models can be unified using general value functions.


Soft Actor-Critic with Inhibitory Networks for Faster Retraining

arXiv.org Artificial Intelligence

Reusing previously trained models is critical in deep reinforcement learning to speed up training of new agents. However, it is unclear how to acquire new skills when objectives and constraints are in conflict with previously learned skills. Moreover, when retraining, there is an intrinsic conflict between exploiting what has already been learned and exploring new skills. In soft actor-critic (SAC) methods, a temperature parameter can be dynamically adjusted to weight the action entropy and balance the explore $\times$ exploit trade-off. However, controlling a single coefficient can be challenging within the context of retraining, even more so when goals are contradictory. In this work, inspired by neuroscience research, we propose a novel approach using inhibitory networks to allow separate and adaptive state value evaluations, as well as distinct automatic entropy tuning. Ultimately, our approach allows for controlling inhibition to handle conflict between exploiting less risky, acquired behaviors and exploring novel ones to overcome more challenging tasks. We validate our method through experiments in OpenAI Gym environments.


Backdoor Detection in Reinforcement Learning

arXiv.org Artificial Intelligence

While the real world application of reinforcement learning (RL) is becoming popular, the safety concern and the robustness of an RL system require more attention. A recent work reveals that, in a multi-agent RL environment, backdoor trigger actions can be injected into a victim agent (a.k.a. trojan agent), which can result in a catastrophic failure as soon as it sees the backdoor trigger action. We propose the problem of RL Backdoor Detection, aiming to address this safety vulnerability. An interesting observation we drew from extensive empirical studies is a trigger smoothness property where normal actions similar to the backdoor trigger actions can also trigger low performance of the trojan agent. Inspired by this observation, we propose a reinforcement learning solution TrojanSeeker to find approximate trigger actions for the trojan agents, and further propose an efficient approach to mitigate the trojan agents based on machine unlearning. Experiments show that our approach can correctly distinguish and mitigate all the trojan agents across various types of agents and environments.