Results



Hard and Easy SAT Problems

Classics

"We report results from large-scale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiability-testing procedures." Proc. AAAI-92.


The problem of expensive chunks and its solution by restricting expressiveness.

Classics

"Chunking, a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to determine them. It is already well-established that chunking improves performance in Soar when viewed in terms of the subproblems required and the number of steps within a subproblem. However, despite the reduction in number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's performance.In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort. We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support our analysis."Machine Learning, 5, 299-348.


Classifier systems and genetic algorithms

Classics

ABSTRACT Classifier systems are massively parallel, message-passing, rule-based systems that learn through credit assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They typically operate in environments that exhibit one or more of the following characteristics: (1) perpetually novel events accompanied by large amounts of noisy or irrelevant data; (2) continual, often real-time, requirements for action; (3) implicitly or inexactly defined goals; and (4) sparse payoff or reinforcement obtainable only through long action sequences. Classifier systems are designed to absorb new information continuously from such environments, devising sets of compet- ing hypotheses (expressed as rules) without disturbing significantly capabilities already acquired. This paper reviews the definition, theory, and extant applications of classifier systems, comparing them with other machine learning techniques, and closing with a discussion of advantages, problems, and possible extensions of classifier systems. Artificial Intelligence, 40 (1-3), 235-82.





Induction of decision trees

Classics

The technology for building knowledge-based systems by inductive inference from examples hasbeen demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directionsMachine Learning, 1, p. 81-106


Quantifying the Inductive Bias in Concept Learning

Classics

See also: 2005 AAAI Classic Paper Awards summary of significance by Tom Mitchell in AI Magazine 26(4), 2005.Proc. AAAI-86


NON-VON's applicability to three AI task areas

Classics

Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, Calif., pp. 61-70