Collaborating Authors


NSW Transport and Cisco to run AI and IoT trials to ease congestion on public transport


The New South Wales government has teamed up with Cisco to trial the use of AI, IoT, and edge computing technology to improve the reliability of public transport in Sydney and Newcastle. As part of the trial, Transport for NSW (TfNSW) is using IoT to enable physical objects to be "digitised" and connected to the transported network via sensors, while edge computing will be leveraged to take real-time data from connected objects to enable faster decision making. AI, meanwhile, will be used to assist with understanding data and automating the process. The technologies will be connected to several buses, ferries, and light rail vehicles in both cities, the state government said. "We've partnered with Cisco to investigate how a real-time view of vehicle supply and customer demand, and performance, can guide future network decisions, and monitor road conditions to identify where repair work is needed," Minister for Transport and Roads Rob Stokes said.

Modelling and Optimisation of Resource Usage in an IoT Enabled Smart Campus Artificial Intelligence

University campuses are essentially a microcosm of a city. They comprise diverse facilities such as residences, sport centres, lecture theatres, parking spaces, and public transport stops. Universities are under constant pressure to improve efficiencies while offering a better experience to various stakeholders including students, staff, and visitors. Nonetheless, anecdotal evidence indicates that campus assets are not being utilised efficiently, often due to the lack of data collection and analysis, thereby limiting the ability to make informed decisions on the allocation and management of resources. Advances in the Internet of Things (IoT) technologies that can sense and communicate data from the physical world, coupled with data analytics and Artificial intelligence (AI) that can predict usage patterns, have opened up new opportunities for organisations to lower cost and improve user experience. This thesis explores this opportunity via theory and experimentation using UNSW Sydney as a living laboratory.