Goto

Collaborating Authors

AAAI Conferences


Twenty-First International Joint Conference on Artificial Intelligence

AAAI Conferences

The theme of IJCAI-09 is "The Interdisciplinary Reach of Artificial Intelligence," with a focus on the broad impact of artificial intelligence on science, engineering, medicine, social sciences, arts, and humanities. The conference will include invited talks, workshops, tutorials, and other events dedicated to this theme.


Twenty-Third IAAI Conference

AAAI Conferences

The Twenty-Third Innovative Applications of Artificial Intelligence Conference (IAAI-11) will be held in San Francisco, California at the Hyatt Regency San Francisco, from August 9–11, 2011, USA. The proceedings will be published by AAAI Press. This site only contains the published proceedings of the conference. For information about the conference in general, please see the conference website.


Twenty-Fourth IAAI Conference

AAAI Conferences

The Twenty-Fourth Innovative Applications of Artificial Intelligence conference (IAAI 2012) will be held in Toronto, Ontario, Canada, July 22–26 2012. The proceedings will be published by AAAI Press. This site only contains the published proceedings of the conference. For information about the conference in general, please see the conference website.


Enriching Non-Parametric Bidirectional Search Algorithms — Extended Abstract

AAAI Conferences

NBS is a non-parametric bidirectional search algorithm, proved to expand at most twice the number of node expansions required to verify the optimality of a solution. We introduce new variants of NBS that are aimed at finding all optimal solutions. We then introduce an algorithmic framework that includes NBS as a special case. Finally, we introduce DVCBS, a new algorithm in this framework that aims to further reduce the number of expansions. Unlike NBS, DVCBS does not have any worst-case bound guarantees, but in practice it outperforms NBS in verifying the optimality of solutions.


Zero-Aware Pattern Databases with 1-Bit Compression for Sliding Tile Puzzles

AAAI Conferences

A pattern database (PDB) is a pre-computed lookup table storing shortest distances from abstract states to abstract goal states. PDBs are key components in heuristic search as their entries are used to prune paths that cannot lead to an optimal solution. With the sliding-tile puzzle as an exemplary application domain, we present methods to improve the precision and size of PDBs by improving additive pattern databases to zero-aware additive pattern databases (ZPDBs), reducing the compression rate from previously 1.6 bit to 1 bit per entry, generating optimal additive pattern partitionings, and building effective collections of pattern databases. With these enhancements, we achieve an overall 8.59-fold performance gain on the 24-puzzle compared to the previously best set of 6-tile PDBs.


Extended Abstract: Searching with Consistent Prioritization for Multi-Agent Path Finding

AAAI Conferences

We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-driven combinatorial search framework. In a variety of empirical comparisons, we demonstrate state-of-the-art solution qualities and success rates, often with similar runtimes to existing algorithms. We also develop new theoretical results that explore the limitations of prioritized planning, in terms of completeness and optimality, for the first time. This paper was published at AAAI 2019.


Generalized Target Assignment and Path Finding Using Answer Set Programming

AAAI Conferences

In Multi-Agent Path Finding (MAPF), a team of agents needs to find collision-free paths from their starting locations to their respective targets. Combined Target Assignment and Path Finding (TAPF) extends MAPF by including the problem of assigning targets to agents as a precursor to the MAPF problem. A limitation of both models is their assumption that the number of agents and targets are equal, which is invalid in some applications. We address this limitation by generalizing TAPF to allow for (1) unequal number of agents and tasks; (2) tasks to have deadlines by which they must be completed; (3) ordering of groups of tasks to be completed; and (4) tasks that are composed of a sequence of checkpoints that must be visited in a specific order. Further, we model the problem using answer set programming (ASP) to show that customizing the desired variant of the problem is simple -- one only needs to choose the appropriate combination of ASP rules to enforce it. We also demonstrate experimentally that if problem specific information can be incorporated into the ASP encoding then ASP based methods can be efficient and can scale up to solve practical applications.


Interleaving Search and Heuristic Improvement

AAAI Conferences

Abstraction heuristics are a leading approach for deriving admissible estimates in cost-optimal planning. However, a drawback with respect to other families of heuristics is that they require a preprocessing phase for choosing the abstraction, computing the abstract distances, and/or suitable cost-partitionings. Typically, this is performed in advance by a fixed amount of time, even though some instances could be solved much faster with little or no preprocessing. We interleave the computation of abstraction heuristics with search, avoiding a long precomputation phase and allowing information from the search to be used for guiding the abstraction selection. To evaluate our ideas, we implement them on a planner that uses a single symbolic PDB. Our results show that delaying the preprocessing is not harmful in general even when an important amount of preprocessing is required to obtain good performance.


Revisiting Suboptimal Search

AAAI Conferences

Suboptimal search algorithms can often solve much larger problems than optimal search algorithms, and thus have broad practical use. This paper returns to early algorithms like WA*, A*_e and Optimistic search. It studies the commonalities between these approaches in order to build a new bounded-suboptimal algorithm. Combined with recent research on avoiding node re-expansions in bounded-optimal search, a new solution quality bound is developed, which often provides proof of the solution bound much earlier during the search. Put together, these ideas provide a new state-of-the-art in bounded-optimal search.


A-MHA*: Anytime Multi-Heuristic A*

AAAI Conferences

Designing good heuristic functions for graph search requires adequate domain knowledge. It is often easy to design heuristics that perform well and correlate with the underlying true cost-to-go values in certain parts of the search space but these may not be admissible throughout the domain thereby affecting the optimality guarantees of the search. Bounded suboptimal search using several of such partially good but inadmissible heuristics was developed in Multi-Heuristic A* (MHA*). Although MHA* leverages multiple inadmissible heuristics to potentially generate a faster suboptimal solution, the original version does not improve the solution over time. It is an one shot algorithm that requires careful setting of inflation factors to obtain a desired one time solution. In this work, we tackle this issue by extending MHA* to an anytime version that finds a feasible suboptimal solution quickly and continually improve it until time runs out. Our work is inspired from the Anytime Repairing A* (ARA*) algorithm. We prove that our precise adaptation of ARA* concepts in the MHA* framework preserves the original suboptimal and completeness guarantees and enhances MHA* to perform in an anytime fashion. Furthermore, we report the performance of A-MHA* in 3-D path planning domain and sliding tiles puzzle and compare against MHA* and other anytime algorithms.