Goto

Collaborating Authors

Results


Fake Hilsa Fish Detection Using Machine Vision

arXiv.org Artificial Intelligence

Hilsa is the national fish of Bangladesh. Bangladesh is earning a lot of foreign currency by exporting this fish. Unfortunately, in recent days, some unscrupulous businessmen are selling fake Hilsa fishes to gain profit. The Sardines and Sardinella are the most sold in the market as Hilsa. The government agency of Bangladesh, namely Bangladesh Food Safety Authority said that these fake Hilsa fish contain high levels of cadmium and lead which are detrimental for humans. In this research, we have proposed a method that can readily identify original Hilsa fish and fake Hilsa fish. Based on the research available on online literature, we are the first to do research on identifying original Hilsa fish. We have collected more than 16,000 images of original and counterfeit Hilsa fish. To classify these images, we have used several deep learning-based models. Then, the performance has been compared between them. Among those models, DenseNet201 achieved the highest accuracy of 97.02%.


Application of Machine Learning Methods in Inferring Surface Water Groundwater Exchanges using High Temporal Resolution Temperature Measurements

arXiv.org Machine Learning

We examine the ability of machine learning (ML) and deep learning (DL) algorithms to infer surface/ground exchange flux based on subsurface temperature observations. The observations and fluxes are produced from a high-resolution numerical model representing conditions in the Columbia River near the Department of Energy Hanford site located in southeastern Washington State. Random measurement error, of varying magnitude, is added to the synthetic temperature observations. The results indicate that both ML and DL methods can be used to infer the surface/ground exchange flux. DL methods, especially convolutional neural networks, outperform the ML methods when used to interpret noisy temperature data with a smoothing filter applied. However, the ML methods also performed well and they are can better identify a reduced number of important observations, which could be useful for measurement network optimization. Surprisingly, the ML and DL methods better inferred upward flux than downward flux. This is in direct contrast to previous findings using numerical models to infer flux from temperature observations and it may suggest that combined use of ML or DL inference with numerical inference could improve flux estimation beneath river systems.


Underwater Acoustic Networks for Security Risk Assessment in Public Drinking Water Reservoirs

arXiv.org Artificial Intelligence

We have built a novel system for the surveillance of drinking water reservoirs using underwater sensor networks. We implement an innovative AI-based approach to detect, classify and localize underwater events. In this paper, we describe the technology and cognitive AI architecture of the system based on one of the sensor networks, the hydrophone network. We discuss the challenges of installing and using the hydrophone network in a water reservoir where traffic, visitors, and variable water conditions create a complex, varying environment. Our AI solution uses an autoencoder for unsupervised learning of latent encodings for classification and anomaly detection, and time delay estimates for sound localization. Finally, we present the results of experiments carried out in a laboratory pool and the water reservoir and discuss the system's potential.


Graph Neural Network-Based Anomaly Detection in Multivariate Time Series

arXiv.org Artificial Intelligence

Given high-dimensional time series data (e.g., sensor data), how can we detect anomalous events, such as system faults and attacks? More challengingly, how can we do this in a way that captures complex inter-sensor relationships, and detects and explains anomalies which deviate from these relationships? Recently, deep learning approaches have enabled improvements in anomaly detection in high-dimensional datasets; however, existing methods do not explicitly learn the structure of existing relationships between variables, or use them to predict the expected behavior of time series. Our approach combines a structure learning approach with graph neural networks, additionally using attention weights to provide explainability for the detected anomalies. Experiments on two real-world sensor datasets with ground truth anomalies show that our method detects anomalies more accurately than baseline approaches, accurately captures correlations between sensors, and allows users to deduce the root cause of a detected anomaly.


Artificial Intelligence Predicts River Water Quality With Weather Data

#artificialintelligence

The difficulty and expense of collecting river water samples in remote areas has led to significant -- and in some cases, decades-long -- gaps in available water chemistry data, according to a Penn State-led team of researchers. The team is using artificial intelligence (AI) to predict water quality and fill the gaps in the data. Their efforts could lead to an improved understanding of how rivers react to human disturbances and climate change. The researchers developed a model that forecasts dissolved oxygen (DO), a key indicator of water's capability to support aquatic life, in lightly monitored watersheds across the United States. They published their results in Environmental Science & Technology.


Adversarial Attacks and Mitigation for Anomaly Detectors of Cyber-Physical Systems

arXiv.org Artificial Intelligence

The threats faced by cyber-physical systems (CPSs) in critical infrastructure have motivated research into a multitude of attack detection mechanisms, including anomaly detectors based on neural network models. The effectiveness of anomaly detectors can be assessed by subjecting them to test suites of attacks, but less consideration has been given to adversarial attackers that craft noise specifically designed to deceive them. While successfully applied in domains such as images and audio, adversarial attacks are much harder to implement in CPSs due to the presence of other built-in defence mechanisms such as rule checkers(or invariant checkers). In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS. Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter, ensuring that the neural network and the rule checking system are both deceived.We implemented our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average, while simultaneously avoiding detection by rule checkers. Finally, we explore whether these attacks can be mitigated by training the detectors on adversarial samples.


Knowledge-Guided Dynamic Systems Modeling: A Case Study on Modeling River Water Quality

arXiv.org Artificial Intelligence

Modeling real-world phenomena is a focus of many science and engineering efforts, such as ecological modeling and financial forecasting, to name a few. Building an accurate model for complex and dynamic systems improves understanding of underlying processes and leads to resource efficiency. Towards this goal, knowledge-driven modeling builds a model based on human expertise, yet is often suboptimal. At the opposite extreme, data-driven modeling learns a model directly from data, requiring extensive data and potentially generating overfitting. We focus on an intermediate approach, model revision, in which prior knowledge and data are combined to achieve the best of both worlds. In this paper, we propose a genetic model revision framework based on tree-adjoining grammar (TAG) guided genetic programming (GP), using the TAG formalism and GP operators in an effective mechanism to incorporate prior knowledge and make data-driven revisions in a way that complies with prior knowledge. Our framework is designed to address the high computational cost of evolutionary modeling of complex systems. Via a case study on the challenging problem of river water quality modeling, we show that the framework efficiently learns an interpretable model, with higher modeling accuracy than existing methods.


Optimization of operation parameters towards sustainable WWTP based on deep reinforcement learning

arXiv.org Artificial Intelligence

A large amount of wastewater has been produced nowadays. Wastewater treatment plants (WWTPs) are designed to eliminate pollutants and alleviate environmental pollution resulting from human activities. However, the construction and operation of WWTPs still have negative impacts. WWTPs are complex to control and optimize because of high nonlinearity and variation. This study used a novel technique, multi-agent deep reinforcement learning (DRL), to optimize dissolved oxygen (DO) and dosage in a hypothetical WWTP. The reward function is specially designed as LCA-based form to achieve sustainability optimization. Four scenarios: baseline, LCA-oriented, cost-oriented and effluent-oriented are considered. The result shows that optimization based on LCA has lowest environmental impacts. The comparison of different SRT indicates that a proper SRT can reduce negative impacts greatly. It is worth mentioning that the retrofitting of WWTPs should be implemented with the consideration of other environmental impacts except cost. Moreover, the comparison between DRL and genetic algorithm (GA) indicates that DRL can solve optimization problems effectively and has great extendibility. In a nutshell, there are still limits and shortcomings of this work, future studies are required.


New AI Enables Rapid Detection of Harmful Bacteria

#artificialintelligence

Testing for pathogens is a critical component of maintaining public health and safety. Having a method to rapidly and reliably test for harmful germs is essential for diagnosing diseases, maintaining clean drinking water, regulating food safety, conducting scientific research, and other important functions of modern society. In recent research, scientists from University of California, Los Angeles (UCLA), have demonstrated that artificial intelligence (AI) can detect harmful bacteria from a water sample up to 12 hours faster than the current gold-standard Environmental Protection Agency (EPA) methods. In a new study published yesterday in Light: Science and Applications, the researchers created a time-lapse imaging platform that uses two separate deep neural networks (DNNs) for the detection and classification of bacteria. The team tested the high-throughput bacterial colony growth detection and classification system using water suspensions with added coliform bacteria of E. coli (including chlorine-stressed E. coli), K. pneumoniae and K. aerogenes, grown on chromogenic agar as the culture medium.


A Comprehensive Review of Deep Learning Applications in Hydrology and Water Resources

arXiv.org Machine Learning

The global volume of digital data is expected to reach 175 zettabytes by 2025. The volume, variety, and velocity of water-related data are increasing due to large-scale sensor networks and increased attention to topics such as disaster response, water resources management, and climate change. Combined with the growing availability of computational resources and popularity of deep learning, these data are transformed into actionable and practical knowledge, revolutionizing the water industry. In this article, a systematic review of literature is conducted to identify existing research which incorporates deep learning methods in the water sector, with regard to monitoring, management, governance and communication of water resources. The study provides a comprehensive review of state-of-the-art deep learning approaches used in the water industry for generation, prediction, enhancement, and classification tasks, and serves as a guide for how to utilize available deep learning methods for future water resources challenges. Key issues and challenges in the application of these techniques in the water domain are discussed, including the ethics of these technologies for decision-making in water resources management and governance. Finally, we provide recommendations and future directions for the application of deep learning models in hydrology and water resources.