Multi-Task Learning on Networks Artificial Intelligence

The multi-task learning (MTL) paradigm can be traced back to an early paper of Caruana (1997) in which it was argued that data from multiple tasks can be used with the aim to obtain a better performance over learning each task independently. A solution of MTL with conflicting objectives requires modelling the trade-off among them which is generally beyond what a straight linear combination can achieve. A theoretically principled and computationally effective strategy is finding solutions which are not dominated by others as it is addressed in the Pareto analysis. Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods. The analysis of these features and the proposal of a new computational approach represent the focus of this work. Multi-objective evolutionary algorithms (MOEAs) can easily include the concept of dominance and therefore the Pareto analysis. The major drawback of MOEAs is a low sample efficiency with respect to function evaluations. The key reason for this drawback is that most of the evolutionary approaches do not use models for approximating the objective function. Bayesian Optimization takes a radically different approach based on a surrogate model, such as a Gaussian Process. In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations. In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function but in an intermediate Information Space where the objects from the input space are mapped into histograms. Computational results show that the sample efficiency and the quality of the Pareto set provided by MOEA/WST are significantly better than in the standard MOEA.

Prediction of Construction Cost for Field Canals Improvement Projects in Egypt Artificial Intelligence

Field canals improvement projects (FCIPs) are one of the ambitious projects constructed to save fresh water. To finance this project, Conceptual cost models are important to accurately predict preliminary costs at the early stages of the project. The first step is to develop a conceptual cost model to identify key cost drivers affecting the project. Therefore, input variables selection remains an important part of model development, as the poor variables selection can decrease model precision. The study discovered the most important drivers of FCIPs based on a qualitative approach and a quantitative approach. Subsequently, the study has developed a parametric cost model based on machine learning methods such as regression methods, artificial neural networks, fuzzy model and case-based reasoning.

Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series Machine Learning

Today's Cyber-Physical Systems (CPSs) are large, complex, and affixed with networked sensors and actuators that are targets for cyber-attacks. Conventional detection techniques are unable to deal with the increasingly dynamic and complex nature of the CPSs. On the other hand, the networked sensors and actuators generate large amounts of data streams that can be continuously monitored for intrusion events. Unsupervised machine learning techniques can be used to model the system behaviour and classify deviant behaviours as possible attacks. In this work, we proposed a novel Generative Adversarial Networks-based Anomaly Detection (GAN-AD) method for such complex networked CPSs. We used LSTM-RNN in our GAN to capture the distribution of the multivariate time series of the sensors and actuators under normal working conditions of a CPS. Instead of treating each sensor's and actuator's time series independently, we model the time series of multiple sensors and actuators in the CPS concurrently to take into account of potential latent interactions between them. To exploit both the generator and the discriminator of our GAN, we deployed the GAN-trained discriminator together with the residuals between generator-reconstructed data and the actual samples to detect possible anomalies in the complex CPS. We used our GAN-AD to distinguish abnormal attacked situations from normal working conditions for a complex six-stage Secure Water Treatment (SWaT) system. Experimental results showed that the proposed strategy is effective in identifying anomalies caused by various attacks with high detection rate and low false positive rate as compared to existing methods.