Results


AI Identifies Patients at Highest Risk of Cholera Infection

#artificialintelligence

Image has been cropped and resized. Scientists have developed machine-learning algorithms that can identify patterns in the bacteria of a patient's gut to determine whether the patient is likely to get infected if exposed to cholera. The researchers believe such artificial intelligence (AI) could be critical in areas of high cholera risk, since it can analyze trillions of bacteria, much more than can be done by humans. The study also demonstrates the power of machine learning to uncover medical insights that would otherwise remain obscure. READ: AI's Ethical Concerns Go Beyond Data Security and Quality The research is a collaboration between Duke University, Massachusetts General Hospital, and the International Centre for Diarrheal Disease Research, in Bangladesh.


AI-Driven Test System Detects Bacteria In Water

#artificialintelligence

"Clean water and health care and school and food and tin roofs and cement floors, all of these things should constitute a set of basics that people must have as birthrights."1 Obtaining clean water is a critical problem for much of the world's population. Testing and confirming a clean water source typically requires expensive test equipment and manual analysis of the results. For regions in the world in which access to clean water is a continuing problem, simpler test methods could dramatically help prevent disease and save lives. To apply artificial intelligence (AI) techniques to evaluating the purity of water sources, Peter Ma, an Intel Software Innovator, developed an effective system for identifying bacteria using pattern recognition and machine learning.


Artificial Intelligence may help identify bacteria quickly, accurately

#artificialintelligence

Microscopes enhanced with artificial intelligence (AI) could help in the quick and accurate diagnosis of the deadly blood infections, which may improve patients' odds of survival, according to a study. The bacteria that most often cause bloodstream infections include the rod-shaped bacteria including Escherichia coli or E.coli, the round clusters of Staphylococcus species, and the pairs or chains of Streptococcus species.


Less Than 10% of Bovine i E. coli /i Strains Affect Human Health

#artificialintelligence

Using software to compare genetic information in bacterial isolates from animals and people, researchers have predicted that less than 10% of Escherichia coli 0157:H7 strains are likely to have the potential to cause human disease. According to Nadejda Lupolova, from the University of Edinburgh, Scotland, and colleagues, "machine-learning approaches have tremendous potential to interrogate complex genome information for which specific attributes of the organism, such as disease or isolation host, are known." The researchers published the results of their study in Proceedings of the National Academy of Sciences. Although most E. coli strains live in the gastrointestinal tracts of people and animals without causing disease, infection with E. coli 0157 is associated with serious illness in people. E. coli 0157 was first identified as a cause of disease in the United States in 1982, during an investigation into an outbreak of hemorrhagic colitis.


Researchers Use Machine Learning to Detect Pathogenic Bacteria in Cattle

#artificialintelligence

A team of researchers has found a new way to detect dangerous strains of bacteria, potentially preventing outbreaks of food poisoning. The team developed a method that utilizes machine learning and tested it with isolates of Escherichia coli strains. The details are in a paper that was just published in the journal Proceedings of the National Academy of Sciences. Most strains of Escherichia coli are harmless and naturally found in the human body. There are pathogenic strains, however, and they are a rising health concern.


The Roslin Institute (University of Edinburgh) - News

#artificialintelligence

Machine learning can predict strains of bacteria likely to cause food poisoning outbreaks, research has found. The study – which focused on harmful strains of E. coli bacteria – could help public health officials to target interventions and reduce risk to human health. Researchers at the University of Edinburgh's Roslin Institute used software that compares genetic information from bacterial samples isolated from both animals and people. The software learns the DNA signatures that are associated with E. coli samples that have caused outbreaks of infection in people. It can then pick out the animal strains that have these signatures, which are therefore likely to be a threat to human health.