Goto

Collaborating Authors

Results


What happened to Boeing flight that went down over China?

FOX News

'Special Report' All-Star Panel reacts to a federal judge declaring public transportation mask mandates unlawful. The mystery surrounding the Boeing plane crash in China last month lingers despite authorities recovering the plane's two black boxes and extensive investigations at the crash site. A Boeing 737 jet crashed into a hillside in Southern China on March 21, killing 132 people on board. China Eastern Airlines flight MU5735 was completing a domestic flight when the crash happened. The Civil Aviation Administration of China (CAAC) has led the investigation over the past month, but Wednesday reported that officials found no evidence of systematic failure aboard the plane at the time of the crash.


SynSetExpan: An Iterative Framework for Joint Entity Set Expansion and Synonym Discovery

arXiv.org Artificial Intelligence

Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have similar likelihoods of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities' infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks.


Least Squares Approximation for a Distributed System

arXiv.org Machine Learning

In this work we develop a distributed least squares approximation (DLSA) method, which is able to solve a large family of regression problems (e.g., linear regression, logistic regression, Cox's model) on a distributed system. By approximating the local objective function using a local quadratic form, we are able to obtain a combined estimator by taking a weighted average of local estimators. The resulting estimator is proved to be statistically as efficient as the global estimator. In the meanwhile it requires only one round of communication. We further conduct the shrinkage estimation based on the DLSA estimation by using an adaptive Lasso approach. The solution can be easily obtained by using the LARS algorithm on the master node. It is theoretically shown that the resulting estimator enjoys the oracle property and is selection consistent by using a newly designed distributed Bayesian Information Criterion (DBIC). The finite sample performance as well as the computational efficiency are further illustrated by extensive numerical study and an airline dataset. The airline dataset is 52GB in memory size. The entire methodology has been implemented by Python for a de-facto standard Spark system. By using the proposed DLSA algorithm on the Spark system, it takes 26 minutes to obtain a logistic regression estimator whereas a full likelihood algorithm takes 15 hours to reaches an inferior result.