Goto

Collaborating Authors

Results


Stop debating whether AI is 'sentient' -- the question is if we can trust it

#artificialintelligence

The past month has seen a frenzy of articles, interviews, and other types of media coverage about Blake Lemoine, a Google engineer who told The Washington Post that LaMDA, a large language model created for conversations with users, is "sentient." After reading a dozen different takes on the topic, I have to say that the media has become (a bit) disillusioned with the hype surrounding current AI technology. A lot of the articles discussed why deep neural networks are not "sentient" or "conscious." This is an improvement in comparison to a few years ago, when news outlets were creating sensational stories about AI systems inventing their own language, taking over every job, and accelerating toward artificial general intelligence. But the fact that we're discussing sentience and consciousness again underlines an important point: We are at a point where our AI systems--namely large language models--are becoming increasingly convincing while still suffering from fundamental flaws that have been pointed out by scientists on different occasions.


"Sentience" is the wrong discussion to have on AI right now

#artificialintelligence

This article is part of Demystifying AI, a series of posts that (try to) disambiguate the jargon and myths surrounding AI. The past week has seen a frenzy of articles, interviews, and other types of media coverage about Blake Lemoine, a Google engineer who told The Washington Post that LaMDA, a large language model created for conversations with users, is "sentient." After reading a dozen different takes on the topic, I have to say that the media has become (a bit) disillusioned with the hype surrounding current AI technology. A lot of the articles discussed why deep neural networks are not "sentient" or "conscious." This is an improvement in comparison to a few years ago, when news outlets were creating sensational stories about AI systems inventing their own language, taking over every job, and accelerating toward artificial general intelligence.


Evidence-aware Fake News Detection with Graph Neural Networks

arXiv.org Artificial Intelligence

The prevalence and perniciousness of fake news has been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from two main weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they neglect much redundant information contained in evidences that may be useless or even harmful. To solve these problems, we propose a unified Graph-based sEmantic sTructure mining framework, namely GET in short. Specifically, different from the existing work that treats claims and evidences as sequences, we model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Finally, the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Comprehensive experiments have demonstrated the superiority of GET over the state-of-the-arts.


An overview of event extraction and its applications

arXiv.org Artificial Intelligence

With the rapid development of information technology, online platforms have produced enormous text resources. As a particular form of Information Extraction (IE), Event Extraction (EE) has gained increasing popularity due to its ability to automatically extract events from human language. However, there are limited literature surveys on event extraction. Existing review works either spend much effort describing the details of various approaches or focus on a particular field. This study provides a comprehensive overview of the state-of-the-art event extraction methods and their applications from text, including closed-domain and open-domain event extraction. A trait of this survey is that it provides an overview in moderate complexity, avoiding involving too many details of particular approaches. This study focuses on discussing the common characters, application fields, advantages, and disadvantages of representative works, ignoring the specificities of individual approaches. Finally, we summarize the common issues, current solutions, and future research directions. We hope this work could help researchers and practitioners obtain a quick overview of recent event extraction.


Knowledge Graph informed Fake News Classification via Heterogeneous Representation Ensembles

arXiv.org Artificial Intelligence

Increasing amounts of freely available data both in textual and relational form offers exploration of richer document representations, potentially improving the model performance and robustness. An emerging problem in the modern era is fake news detection -- many easily available pieces of information are not necessarily factually correct, and can lead to wrong conclusions or are used for manipulation. In this work we explore how different document representations, ranging from simple symbolic bag-of-words, to contextual, neural language model-based ones can be used for efficient fake news identification. One of the key contributions is a set of novel document representation learning methods based solely on knowledge graphs, i.e. extensive collections of (grounded) subject-predicate-object triplets. We demonstrate that knowledge graph-based representations already achieve competitive performance to conventionally accepted representation learners. Furthermore, when combined with existing, contextual representations, knowledge graph-based document representations can achieve state-of-the-art performance. To our knowledge this is the first larger-scale evaluation of how knowledge graph-based representations can be systematically incorporated into the process of fake news classification.


Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

arXiv.org Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.


Towards Explainable Fact Checking

arXiv.org Machine Learning

The past decade has seen a substantial rise in the amount of mis- and disinformation online, from targeted disinformation campaigns to influence politics, to the unintentional spreading of misinformation about public health. This development has spurred research in the area of automatic fact checking, from approaches to detect check-worthy claims and determining the stance of tweets towards claims, to methods to determine the veracity of claims given evidence documents. These automatic methods are often content-based, using natural language processing methods, which in turn utilise deep neural networks to learn higher-order features from text in order to make predictions. As deep neural networks are black-box models, their inner workings cannot be easily explained. At the same time, it is desirable to explain how they arrive at certain decisions, especially if they are to be used for decision making. While this has been known for some time, the issues this raises have been exacerbated by models increasing in size, and by EU legislation requiring models to be used for decision making to provide explanations, and, very recently, by legislation requiring online platforms operating in the EU to provide transparent reporting on their services. Despite this, current solutions for explainability are still lacking in the area of fact checking. This thesis presents my research on automatic fact checking, including claim check-worthiness detection, stance detection and veracity prediction. Its contributions go beyond fact checking, with the thesis proposing more general machine learning solutions for natural language processing in the area of learning with limited labelled data. Finally, the thesis presents some first solutions for explainable fact checking.


Towards Personalized and Human-in-the-Loop Document Summarization

arXiv.org Artificial Intelligence

The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.