Goto

Collaborating Authors

Results


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


Google News probably thinks I cover Spiderman because AI is dumb

#artificialintelligence

Google News holds a special place in the world of journalism. When multiple media outlets report on the same topic in a short amount of time, the articles that make it to the main News page are seen by the most people. If you're a musician, you want your song to show up on Spotify's main page. If you're in a comedy movie, you want it to be listed first in the "comedy" section on Netflix. That's why one of my crowning achievements as a journalist was convincing the Google News algorithm I was the queerest artificial intelligence reporter in the world.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


DigiTech Insight Magazine

#artificialintelligence

The global spending on the artificial intelligence (AI) market is also estimated to reach $118.6 billion by 2025. A Business Wire research unveiled that the amount spent on cloud AI in the media and entertainment (M & E) industry is anticipated to reach $1,860.9 million by 2025 from $329 million in 2019. The worldwide AI market adoption rate is estimated to reach $118.6 billion by 2025 [source: www.statista.com] Here are some of the examples of how AI is changing the media landscape. The AI market for social media is estimated to reach 3,714.89 million at 28.77% CAGR by 2025.


Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases

arXiv.org Artificial Intelligence

Equipping machines with comprehensive knowledge of the world's entities and their relationships has been a long-standing goal of AI. Over the last decade, large-scale knowledge bases, also known as knowledge graphs, have been automatically constructed from web contents and text sources, and have become a key asset for search engines. This machine knowledge can be harnessed to semantically interpret textual phrases in news, social media and web tables, and contributes to question answering, natural language processing and data analytics. This article surveys fundamental concepts and practical methods for creating and curating large knowledge bases. It covers models and methods for discovering and canonicalizing entities and their semantic types and organizing them into clean taxonomies. On top of this, the article discusses the automatic extraction of entity-centric properties. To support the long-term life-cycle and the quality assurance of machine knowledge, the article presents methods for constructing open schemas and for knowledge curation. Case studies on academic projects and industrial knowledge graphs complement the survey of concepts and methods.


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Building A User-Centric and Content-Driven Socialbot

arXiv.org Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.


Netflix open-sources Polynote to simplify data science and machine learning workflows

#artificialintelligence

Machine learning and data science development isn't exactly a walk in the park, but Netflix hopes to streamline the most arduous bits with a new freely …


Jeff Bezos' master plan

#artificialintelligence

What the Amazon founder and CEO wants for his empire and himself, and what that means for the rest of us. Where in the pantheon of American commercial titans does Jeffrey Bezos belong? Andrew Carnegie's hearths forged the steel that became the skeleton of the railroad and the city. John D. Rockefeller refined 90 percent of American oil, which supplied the pre-electric nation with light. Bill Gates created a program that was considered a prerequisite for turning on a computer. At 55, Bezos has never dominated a major market as thoroughly as any of these forebears, and while he is presently the richest man on the planet, he has less wealth than Gates did at his zenith. Yet Rockefeller largely contented himself with oil wells, pump stations, and railcars; Gates's fortune depended on an operating system. The scope of the empire the founder and CEO of Amazon has built is wider. Indeed, it is without precedent in the long history of American capitalism. More product searches are conducted ...


Netflix is testing human-curated 'Collections'

#artificialintelligence

On the one hand, machine learning is a fantastic way to simplify many tedious processes, such as data entry.