Goto

Collaborating Authors

Results


Predictive maintenance and decision support systems in heavy industry

#artificialintelligence

Digital transformation is one of the top priorities for industrial companies. The largest players are already moving in this direction, for many years continuously working to improve production efficiency and launching large-scale optimisation programs. They're called advanced analytics or digital innovation, and at their core, the technology could be summarised under artificial intelligence. In all cases, the efforts to utilise AI models or data analytics systems are part of a bigger digital transformation effort of the progressing companies. In an industrial context, such strategies for cost-saving and process optimisation often start from pilot projects, or top management directives for digital change guide them. In general, changes in processes or investments in capital-intensive and competitive industries require large sums of money. Traditional capital expenditures usually stretch over a long period, so a current financial standing may not allow for a complete physical overhaul of the plants or facilities. These high costs lead to the search for cheaper alternatives.


Global Big Data Conference

#artificialintelligence

Amazon's 2019 Climate Pledge calls for a commitment to net zero carbon across their businesses by 2040. Since then, the company has reduced the weight of their outbound packaging by 33%, eliminating 915,000 tons of packaging material worldwide, or the equivalent of over 1.5 billion shipping boxes. With less packaging used throughout the supply chain, volume per shipment is reduced and transportation becomes more efficient. The cumulative impact across Amazon's enormous network is a dramatic reduction in carbon emissions. To make this happen, the customer packaging experience team partnered with AWS to build a machine learning solution powered by Amazon SageMaker.


Top 8 Data Mining Techniques In Machine Learning

#artificialintelligence

Data mining is considered to be one of the popular terms of machine learning as it extracts meaningful information from the large pile of datasets and is used for decision-making tasks. It is a technique to identify patterns in a pre-built database and is used quite extensively by organisations as well as academia. The various aspects of data mining include data cleaning, data integration, data transformation, data discretisation, pattern evaluation and more. Below, we have listed the top eight data mining techniques in machine learning that is most used by data scientists. Association Rule Learning is one of the unsupervised data mining techniques in which an item set is defined as a collection of one or more items.


Distilling Liquor With Machine Learning And Big Data

#artificialintelligence

According to a Nielsen report, brick-and-mortar alcohol dollar sales were up 21% in April 2020 compared to the same period a year ago. Online alcohol sales skyrocketed by 234% over the same period in 2019. However, despite the increase, global sales are decreasing due to the shutdowns in restaurants, bars, live events and travel. Next Century Spirits is a liquor technology startup with $9.6 M in funding. The company uses big data and machine learning to create and filter bespoke distilled spirits.


Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing

arXiv.org Artificial Intelligence

The implementation of robust, stable, and user-centered data analytics and machine learning models is confronted by numerous challenges in production and manufacturing. Therefore, a systematic approach is required to develop, evaluate, and deploy such models. The data-driven knowledge discovery framework provides an orderly partition of the data-mining processes to ensure the practical implementation of data analytics and machine learning models. However, the practical application of robust industry-specific data-driven knowledge discovery models faces multiple data-- and model-development--related issues. These issues should be carefully addressed by allowing a flexible, customized, and industry-specific knowledge discovery framework; in our case, this takes the form of the cross-industry standard process for data mining (CRISP-DM). This framework is designed to ensure active cooperation between different phases to adequately address data- and model-related issues. In this paper, we review several extensions of CRISP-DM models and various data-robustness-- and model-robustness--related problems in machine learning, which currently lacks proper cooperation between data experts and business experts because of the limitations of data-driven knowledge discovery models.


Data Mining and Machine Learning: Fundamental Concepts and Algorithms: The Free eBook - KDnuggets

#artificialintelligence

We are pleased to announce the second edition of our book Data Mining and Machine Learning: Fundamental Concepts and Algorithms, Second Edition, by Mohammed J. Zaki and Wagner Meira, Jr., published by Cambridge University Press, 2020. The entire book is available to read online for free and the site includes video lectures and other resources. New to this edition is an entire part devoted to regression and deep learning. The fundamental algorithms in data mining and machine learning form the basis of data science, utilizing automated methods to analyze patterns and models for all kinds of data in applications ranging from scientific discovery to business analytics. This textbook for senior undergraduate and graduate courses provides a comprehensive, in-depth overview of data mining, machine learning and statistics, offering solid guidance for students, researchers, and practitioners.


Global Big Data Conference

#artificialintelligence

When you think of the words "data" and "mine", no doubt the idea of data mining comes first. However, just as much as we find value in mining the rich resources of data, so too can we apply the advanced techniques for dealing with data to real-world mining -- that is, extracting natural resources from the earth. The world is just as dependent on natural resources as it is data resources, so it makes sense to see how the evolving areas of artificial intelligence and machine learning have an impact on the world of mining and natural resource extraction. Mining has always been a dangerous profession, since extracting minerals, natural gas, petroleum, and other resources requires working in conditions that can be dangerous for human life. Increasingly, we are needing to go to harsher climates such as deep under the ocean or deep inside the earth to extract the resources we still need.


AI And The Digital Mine

#artificialintelligence

When you think of the words "data" and "mine", no doubt the idea of data mining comes first. However, just as much as we find value in mining the rich resources of data, so too can we apply the advanced techniques for dealing with data to real-world mining -- that is, extracting natural resources from the earth. The world is just as dependent on natural resources as it is data resources, so it makes sense to see how the evolving areas of artificial intelligence and machine learning have an impact on the world of mining and natural resource extraction. Mining has always been a dangerous profession, since extracting minerals, natural gas, petroleum, and other resources requires working in conditions that can be dangerous for human life. Increasingly, we are needing to go to harsher climates such as deep under the ocean or deep inside the earth to extract the resources we still need.


Using big data to design gas separation membranes, reduce CO2

#artificialintelligence

Their study, published today in Science Advances, is the first to apply an experimentally validated machine learning method to rapidly design and develop advanced gas separation membranes. "Our work points to a new way of materials design and we expect it to revolutionize the field," says the study's PI Sanat Kumar, Bykhovsky Professor of Chemical Engineering and a pioneer in developing polymer nanocomposites with improved properties. Plastic films or membranes are often used to separate mixtures of simple gases, like carbon dioxide (CO2), nitrogen (N2), and methane (CH4). Scientists have proposed using membrane technology to separate CO2 from other gases for natural gas purification and carbon capture, but there are potentially hundreds of thousands of plastics that can be produced with our current synthetic toolbox, all of which vary in their chemical structure. Manufacturing and testing all of these materials is an expensive and time-consuming process, and to date, only about 1,000 have been evaluated as gas separation membranes.


Autonomous discovery in the chemical sciences part I: Progress

arXiv.org Artificial Intelligence

This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this first part, we describe a classification for discoveries of physical matter (molecules, materials, devices), processes, and models and how they are unified as search problems. We then introduce a set of questions and considerations relevant to assessing the extent of autonomy. Finally, we describe many case studies of discoveries accelerated by or resulting from computer assistance and automation from the domains of synthetic chemistry, drug discovery, inorganic chemistry, and materials science. These illustrate how rapid advancements in hardware automation and machine learning continue to transform the nature of experimentation and modelling. Part two reflects on these case studies and identifies a set of open challenges for the field.