Collaborating Authors


Data Mining: Market Basket Analysis with Apriori Algorithm


Some of us go to the grocery with a standard list; while some of us have a hard time sticking to our grocery shopping list, no matter how determined we are. No matter which type of person you are, retailers will always be experts at making various temptations to inflate your budget. Remember the time when you had the "Ohh, I might need this as well." Retailers boost their sales by relying on this one simple intuition. People that buy this will most likely want to buy that as well. People who buy bread will have a higher chance of buying butter together, therefore an experienced assortment manager will definitely know that having a discount on bread pushes the sales on butter as well.

Data Mining with Rattle


Rattle and R deliver a very sophisticated data mining environment. Data Mining with Rattle is a unique course that instructs with respect to both the concepts of data mining, as well as to the "hands-on" use of a popular, contemporary data mining software tool, "Data Miner," also known as the'Rattle' package in R software. Rattle is a popular GUI-based software tool which'fits on top of' R software. The course focuses on life-cycle issues, processes, and tasks related to supporting a'cradle-to-grave' data mining project. These include: data exploration and visualization; testing data for random variable family characteristics and distributional assumptions; transforming data by scale or by data type; performing cluster analyses; creating, analyzing and interpreting association rules; and creating and evaluating predictive models that may utilize: regression; generalized linear modeling (GLMs); decision trees; recursive partitioning; random forests; boosting; and/or support vector machine (SVM) paradigms. It is both a conceptual and a practical course as it teaches and instructs about data mining, and provides ample demonstrations of conducting data mining tasks using the Rattle R package.


AAAI Conferences

Abstracts of the invited talks presented at the AAAI Fall Symposium on Discovery Informatics: AI Takes a Science-Centered View on Big Data. Talks include A Data Lifecycle Approach to Discovery Informatics, Generating Biomedical Hypotheses Using Semantic Web Technologies, Socially Intelligent Science, Representing and Reasoning with Experimental and Quasi-Experimental Designs, Bioinformatics Computation of Metabolic Models from Sequenced Genomes, Climate Informatics: Recent Advances and Challenge Problems for Machine Learning in Climate Science, Predictive Modeling of Patient State and Therapy Optimization, Case Studies in Data-Driven Systems: Building Carbon Maps to Finding Neutrinos, Computational Analysis of Complex Human Disorders, and Look at This Gem: Automated Data Prioritization for Scientific Discovery of Exoplanets, Mineral Deposits, and More.

Functional Anomaly Detection: a Benchmark Study Machine Learning

The increasing automation in many areas of the Industry expressly demands to design efficient machine-learning solutions for the detection of abnormal events. With the ubiquitous deployment of sensors monitoring nearly continuously the health of complex infrastructures, anomaly detection can now rely on measurements sampled at a very high frequency, providing a very rich representation of the phenomenon under surveillance. In order to exploit fully the information thus collected, the observations cannot be treated as multivariate data anymore and a functional analysis approach is required. It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets. After an overview of the state-of-the-art and a visual-descriptive study, a variety of anomaly detection methods are compared. While taxonomies of abnormalities (e.g. shape, location) in the functional setup are documented in the literature, assigning a specific type to the identified anomalies appears to be a challenging task. Thus, strengths and weaknesses of the existing approaches are benchmarked in view of these highlighted types in a simulation study. Anomaly detection methods are next evaluated on two datasets, related to the monitoring of helicopters in flight and to the spectrometry of construction materials namely. The benchmark analysis is concluded by recommendation guidance for practitioners.

Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

How Incorta uses AI to address supply-chain issues


Prior to this pandemic year of 2021, the term "supply chain" didn't raise many red flags for most consumers, frankly because they didn't have to think about it. Buyers were so accustomed to getting things on schedule that it rarely became a regular topic of conversation. That all changed in the second half of 2021. With the pandemic slowing down production lines and transportation in faraway places, the term "supply chain" is now regularly in headlines. This has been the greatest shock to global supply chains in modern history.

Top 100 Most Read Interviews of Influential Tech Leaders by Analytics Insight


'Business is an art and business leaders are artists', a well said a statement that is proving to be true every time a top leader takes amazing decisions for his organization. Although businesses rise and fall as times change, leaders never fail to be at the forefront to give their best. However, the key to long-term sustained success is great leadership and the ability of an executive to embrace the evolving trends. While talking about trends, the first thing that comes to our mind is artificial intelligence and disruptive technologies that are driving the next generation towards major digitization. The idea of technology came to practical usage when men thought that they needed machines to replace human activities. The core of such machines is to mimic or outperform human cognition. Although the concept of artificial intelligence came into existence in the 1950s, it didn't get fruition till the 1990s when technology hit the mainstream applications. Since then, the rise of technology has been enabled by exponentially faster and more powerful computers and large, complex datasets. Today, we have many futuristic technologies like machine learning, autonomous systems, data analytics, data science, and AR/VR in play. On the other hand, the enormous inflow of data has also contributed to this growth. In the digital world, development is highly reliant on technological advancement. Organizations across diverse industries are processing data to find insights and data-driven answers. Apart from laymen and consumers, it is the business leaders and corporate executives who have joined the bandwagon of the population to use artificial intelligence to the fullest. These trailblazing leaders are now increasingly using technology to optimize performance and experiment with new explorations. Their success story is what the world needs to hear. Analytics Insight has listed the top 100 such interviews that describe the journey of tech leaders and companies. Engineering and mining companies have faced a growing range of pressures in recent years, including price volatility, the need to drill down deeper to find new resources, and an industry-wide skills shortage. To address these challenges, many mining companies have embraced digital technology to enhance engineering design and develop smart mines'. Ausenco is a tech-savvy engineering company that delivers innovative, value-add consulting services, project delivery, asset operations, and maintenance solutions to the mining and metals, oil and gas, and industrial sectors….

KnAC: an approach for enhancing cluster analysis with background knowledge and explanations Artificial Intelligence

Pattern discovery in multidimensional data sets has been a subject of research since decades. There exists a wide spectrum of clustering algorithms that can be used for that purpose. However, their practical applications share in common the post-clustering phase, which concerns expert-based interpretation and analysis of the obtained results. We argue that this can be a bottleneck of the process, especially in the cases where domain knowledge exists prior to clustering. Such a situation requires not only a proper analysis of automatically discovered clusters, but also a conformance checking with existing knowledge. In this work, we present Knowledge Augmented Clustering (KnAC), which main goal is to confront expert-based labelling with automated clustering for the sake of updating and refining the former. Our solution does not depend on any ready clustering algorithm, nor introduce one. Instead KnAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and model-agnostic. We demonstrate the feasibility of our method on artificially, reproducible examples and on a real life use case scenario.

Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021 Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Why I'm joining Graphcore to lead our Developer Relations


Created video streaming and network acceleration algorithms that have found their way in screens both large and small. It was also the first patent I had granted with Samsung, it was an equally challenging and fulfilling development crunch. Developed a mixed-reality tool for connected classrooms. It was a project with Samsung's Advanced Solutions Lab where one day I'm prototyping hardware for its Tangible User Interface, and another day I'm coding pattern recognition. While Harvard Business Review's D.J. Patil and Thomas Davenport declared Data Scientist "The Sexiest Job of the 21st Century", I have been fortunate enough to personally have been in a position to lead companies in various industries which were going through their own big data and data science transformations.