Collaborating Authors


PneumoXttention: A CNN compensating for Human Fallibility when Detecting Pneumonia through CXR images with Attention Artificial Intelligence

Automatic Chest Radiograph X-ray (CXR) interpretation by machines is an important research topic of Artificial Intelligence. As part of my journey through the California Science Fair, I have developed an algorithm that can detect pneumonia from a CXR image to compensate for human fallibility. My algorithm, PneumoXttention, is an ensemble of two 13 layer convolutional neural network trained on the RSNA dataset, a dataset provided by the Radiological Society of North America, containing 26,684 frontal X-ray images split into the categories of pneumonia and no pneumonia. The dataset was annotated by many professional radiologists in North America. It achieved an impressive F1 score, 0.82, on the test set (20% random split of RSNA dataset) and completely compensated Human Radiologists on a random set of 25 test images drawn from RSNA and NIH. I don't have a direct comparison but Stanford's Chexnet has a F1 score of 0.435 on the NIH dataset for category Pneumonia.

Deep Compressed Pneumonia Detection for Low-Power Embedded Devices Machine Learning

Deep neural networks (DNNs) have been expanded into medical fields and triggered the revolution of some medical applications by extracting complex features and achieving high accuracy and performance, etc. On the contrast, the large-scale network brings high requirements of both memory storage and computation resource, especially for portable medical devices and other embedded systems. In this work, we first train a DNN for pneumonia detection using the dataset provided by RSNA Pneumonia Detection Challenge [4]. To overcome hardware limitation for implementing large-scale networks, we develop a systematic structured weight pruning method with filter sparsity, column sparsity and combined sparsity. Experiments show that we can achieve up to 36x compression ratio compared to the original model with 106 layers, while maintaining no accuracy degradation. We evaluate the proposed methods on an embedded low-power device, Jetson TX2, and achieve low power usage and high energy efficiency. Keywords: Pneumonia detection · YOLO · structured weight pruning.