Goto

Collaborating Authors

Results


Microsoft shifts gears with its 'Project Cortex' knowledge management service

ZDNet

Microsoft has been working to deliver a knowledge-management service for several years. Last year, at its Ignite IT Pro conference, it officially announced plans for its latest iteration of such a service under the codename "Project Cortex." At this year's Ignite, Microsoft is announcing the revamp of Cortex, as well as its plans for the rollout of the first few Cortex components. Up until this week, it seemed as if Project Cortex was going to be a single, centralized service that could be accessed inside existing Microsoft applications like Outlook, SharePoint, and more. Microsoft officials had been calling Cortex the first new major Microsoft 365 service since Microsoft Teams was launched in 2017.


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Using Search Queries to Understand Health Information Needs in Africa

arXiv.org Artificial Intelligence

The lack of comprehensive, high-quality health data in developing nations creates a roadblock for combating the impacts of disease. One key challenge is understanding the health information needs of people in these nations. Without understanding people's everyday needs, concerns, and misconceptions, health organizations and policymakers lack the ability to effectively target education and programming efforts. In this paper, we propose a bottom-up approach that uses search data from individuals to uncover and gain insight into health information needs in Africa. We analyze Bing searches related to HIV/AIDS, malaria, and tuberculosis from all 54 African nations. For each disease, we automatically derive a set of common search themes or topics, revealing a wide-spread interest in various types of information, including disease symptoms, drugs, concerns about breastfeeding, as well as stigma, beliefs in natural cures, and other topics that may be hard to uncover through traditional surveys. We expose the different patterns that emerge in health information needs by demographic groups (age and sex) and country. We also uncover discrepancies in the quality of content returned by search engines to users by topic. Combined, our results suggest that search data can help illuminate health information needs in Africa and inform discussions on health policy and targeted education efforts both on- and offline.