Goto

Collaborating Authors

Results


A Hybrid Feature Extraction Method for Nepali COVID-19-Related Tweets Classification

#artificialintelligence

COVID-19 is one of the deadliest viruses, which has killed millions of people around the world to this date. The reason for peoples' death is not only linked to its infection but also to peoples' mental states and sentiments triggered by the fear of the virus. People's sentiments, which are predominantly available in the form of posts/tweets on social media, can be interpreted using two kinds of information: syntactical and semantic. Herein, we propose to analyze peoples' sentiment using both kinds of information (syntactical and semantic) on the COVID-19-related twitter dataset available in the Nepali language. For this, we, first, use two widely used text representation methods: TF-IDF and FastText and then combine them to achieve the hybrid features to capture the highly discriminating features. Second, we implement nine widely used machine learning classifiers (Logistic Regression, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, Decision Trees, Random Forest, Extreme Tree classifier, AdaBoost, and Multilayer Perceptron), based on the three feature representation methods: TF-IDF, FastText, and Hybrid. To evaluate our methods, we use a publicly available Nepali-COVID-19 tweets dataset, NepCov19Tweets, which consists of Nepali tweets categorized into three classes (Positive, Negative, and Neutral). The evaluation results on the NepCOV19Tweets show that the hybrid feature extraction method not only outperforms the other two individual feature extraction methods while using nine different machine learning algorithms but also provides excellent performance when compared with the state-of-the-art methods. Natural language processing (NLP) techniques have been developed to assess peoples' sentiments on various topics.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI

arXiv.org Artificial Intelligence

The second edition of Deep Learning Interviews is home to hundreds of fully-solved problems, from a wide range of key topics in AI. It is designed to both rehearse interview or exam specific topics and provide machine learning MSc / PhD. students, and those awaiting an interview a well-organized overview of the field. The problems it poses are tough enough to cut your teeth on and to dramatically improve your skills-but they're framed within thought-provoking questions and engaging stories. That is what makes the volume so specifically valuable to students and job seekers: it provides them with the ability to speak confidently and quickly on any relevant topic, to answer technical questions clearly and correctly, and to fully understand the purpose and meaning of interview questions and answers. Those are powerful, indispensable advantages to have when walking into the interview room. The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects

arXiv.org Artificial Intelligence

The significant increase in the number of individuals with chronic ailments (including the elderly and disabled) has dictated an urgent need for an innovative model for healthcare systems. The evolved model will be more personalized and less reliant on traditional brick-and-mortar healthcare institutions such as hospitals, nursing homes, and long-term healthcare centers. The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies, especially in artificial intelligence (AI) and machine learning (ML). This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment. Additionally, the paper demonstrates software integration architectures that are very significant to create smart healthcare systems, integrating seamlessly the benefit of data analytics and other tools of AI. The explained developed systems focus on several facets: the contribution of each developed framework, the detailed working procedure, the performance as outcomes, and the comparative merits and limitations. The current research challenges with potential future directions are addressed to highlight the drawbacks of existing systems and the possible methods to introduce novel frameworks, respectively. This review aims at providing comprehensive insights into the recent developments of smart healthcare systems to equip experts to contribute to the field.


Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities

arXiv.org Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.