Measuring Outcomes in Healthcare Economics using Artificial Intelligence: with Application to Resource Management Artificial Intelligence

The quality of service in healthcare is constantly challenged by outlier events such as pandemics (i.e. Covid-19) and natural disasters (such as hurricanes and earthquakes). In most cases, such events lead to critical uncertainties in decision making, as well as in multiple medical and economic aspects at a hospital. External (geographic) or internal factors (medical and managerial), lead to shifts in planning and budgeting, but most importantly, reduces confidence in conventional processes. In some cases, support from other hospitals proves necessary, which exacerbates the planning aspect. This manuscript presents three data-driven methods that provide data-driven indicators to help healthcare managers organize their economics and identify the most optimum plan for resources allocation and sharing. Conventional decision-making methods fall short in recommending validated policies for managers. Using reinforcement learning, genetic algorithms, traveling salesman, and clustering, we experimented with different healthcare variables and presented tools and outcomes that could be applied at health institutes. Experiments are performed; the results are recorded, evaluated, and presented.

Interpretable bias mitigation for textual data: Reducing gender bias in patient notes while maintaining classification performance Machine Learning

Medical systems in general, and patient treatment decisions and outcomes in particular, are affected by bias based on gender and other demographic elements. As language models are increasingly applied to medicine, there is a growing interest in building algorithmic fairness into processes impacting patient care. Much of the work addressing this question has focused on biases encoded in language models -- statistical estimates of the relationships between concepts derived from distant reading of corpora. Building on this work, we investigate how word choices made by healthcare practitioners and language models interact with regards to bias. We identify and remove gendered language from two clinical-note datasets and describe a new debiasing procedure using BERT-based gender classifiers. We show minimal degradation in health condition classification tasks for low- to medium-levels of bias removal via data augmentation. Finally, we compare the bias semantically encoded in the language models with the bias empirically observed in health records. This work outlines an interpretable approach for using data augmentation to identify and reduce the potential for bias in natural language processing pipelines.

Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.

Artificial Intelligence for Social Good: A Survey Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.