Plotting

Results


Machine Learning: Algorithms, Models, and Applications

arXiv.org Artificial Intelligence

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.


Simulation Intelligence: Towards a New Generation of Scientific Methods

arXiv.org Artificial Intelligence

The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science.


Use of machine learning in geriatric clinical care for chronic diseases: a systematic literature review

arXiv.org Artificial Intelligence

Objectives-Geriatric clinical care is a multidisciplinary assessment designed to evaluate older patients (age 65 years and above) functional ability, physical health, and cognitive wellbeing. The majority of these patients suffer from multiple chronic conditions and require special attention. Recently, hospitals utilize various artificial intelligence (AI) systems to improve care for elderly patients. The purpose of this systematic literature review is to understand the current use of AI systems, particularly machine learning (ML), in geriatric clinical care for chronic diseases. Materials and Methods-We restricted our search to eight databases, namely PubMed, WorldCat, MEDLINE, ProQuest, ScienceDirect, SpringerLink, Wiley, and ERIC, to analyze research articles published in English between January 2010 and June 2019. We focused on studies that used ML algorithms in the care of geriatrics patients with chronic conditions. Results-We identified 35 eligible studies and classified in three groups-psychological disorder (n=22), eye diseases (n=6), and others (n=7). This review identified the lack of standardized ML evaluation metrics and the need for data governance specific to health care applications. Conclusion- More studies and ML standardization tailored to health care applications are required to confirm whether ML could aid in improving geriatric clinical care.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond

arXiv.org Artificial Intelligence

Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made. This research field inspects the measures and models involved in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms can not manifest how and why a decision has been cast. This is particularly true of the most popular deep neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by the lack of explainability in these black-box models. The XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies, although in general these deep neural networks can return an arresting dividend in performance. The insufficient explainability and transparency in most existing AI systems can be one of the major reasons that successful implementation and integration of AI tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI solutions, from which we can envisage successful applications in a broader range of clinical questions.


Ethical Machine Learning in Health Care

arXiv.org Artificial Intelligence

The use of machine learning (ML) in health care raises numerous ethical concerns, especially as models can amplify existing health inequities. Here, we outline ethical considerations for equitable ML in the advancement of health care. Specifically, we frame ethics of ML in health care through the lens of social justice. We describe ongoing efforts and outline challenges in a proposed pipeline of ethical ML in health, ranging from problem selection to post-deployment considerations. We close by summarizing recommendations to address these challenges.


Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)

arXiv.org Artificial Intelligence

Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different fields. One critically important yet less explored aspect is how data and model uncertainties are captured and analyzed. Proper quantification of uncertainty provides valuable information for optimal decision making. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. We have little knowledge about the optimal treatment methods as there are many sources of uncertainty in medical science. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, application of novel deep learning techniques to deal such uncertainties have significantly increased.


COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching

arXiv.org Artificial Intelligence

Clinical trials play important roles in drug development but often suffer from expensive, inaccurate and insufficient patient recruitment. The availability of massive electronic health records (EHR) data and trial eligibility criteria (EC) bring a new opportunity to data driven patient recruitment. One key task named patient-trial matching is to find qualified patients for clinical trials given structured EHR and unstructured EC text (both inclusion and exclusion criteria). How to match complex EC text with longitudinal patient EHRs? How to embed many-to-many relationships between patients and trials? How to explicitly handle the difference between inclusion and exclusion criteria? In this paper, we proposed CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching. One path of the network encodes EC using convolutional highway network. The other path processes EHR with multi-granularity memory network that encodes structured patient records into multiple levels based on medical ontology. Using the EC embedding as query, COMPOSE performs attentional record alignment and thus enables dynamic patient-trial matching. COMPOSE also introduces a composite loss term to maximize the similarity between patient records and inclusion criteria while minimize the similarity to the exclusion criteria. Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching, which leads 24.3% improvement over the best baseline on real-world patient-trial matching tasks.


Industry News

#artificialintelligence

Find here a listing of the latest industry news in genomics, genetics, precision medicine, and beyond. Updates are provided on a monthly basis. Sign-Up for our newsletter and never miss out on the latest news and updates. As 2019 came to an end, Veritas Genetics struggled to get funding due to concerns it had previously taken money from China. It was forced to cease US operations and is in talks with potential buyers. The GenomeAsia 100K Project announced its pilot phase with hopes to tackle the underrepresentation of non-Europeans in human genetic studies and enable genetic discoveries across Asia. Veritas Genetics, the start-up that can sequence a human genome for less than $600, ceases US operations and is in talks with potential buyers Veritas Genetics ceases US operations but will continue Veritas Europe and Latin America. It had trouble raising funding due to previous China investments and is looking to be acquired. Illumina loses DNA sequencing patents The European Patent ...


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.