Collaborating Authors


State of AI Ethics Report (Volume 6, February 2022) Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.

Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Simulation Intelligence: Towards a New Generation of Scientific Methods Artificial Intelligence

The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science.

On the Opportunities and Risks of Foundation Models Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Robots threaten jobs less than fearmongers claim


THE COFFEESHOP is an engine of social mobility. Barista jobs require soft skills and little experience, making them a first port of call for young people and immigrants looking for work. So it may be worrying that robotic baristas are spreading. RC Coffee, which bills itself "Canada's first robotic café", opened in Toronto last summer. "[T]he barista-to-customer interaction is somewhat risky despite people's best efforts to maintain a safe environment," the firm says.

Personal Productivity and Well-being -- Chapter 2 of the 2021 New Future of Work Report Artificial Intelligence

We now turn to understanding the impact that COVID-19 had on the personal productivity and well-being of information workers as their work practices were impacted by remote work. This chapter overviews people's productivity, satisfaction, and work patterns, and shows that the challenges and benefits of remote work are closely linked. Looking forward, the infrastructure surrounding work will need to evolve to help people adapt to the challenges of remote and hybrid work.

Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.

Across the U.S. and Europe, the pandemic's grip on economies tightens

The Japan Times

Washington – The worsening of the viral pandemic across the United States and Europe is threatening their economies and intensifying pressure on governments and central banks on both continents to intervene aggressively. In a worrisome sign of the harm the virus is inflicting in the U.S, the government said Thursday that the number of Americans seeking unemployment benefits jumped last week to 853,000 -- the most since September. The surge in jobless claims made clear that many companies are still shedding workers as states reimpose business shutdowns and consumers avoid shopping, traveling or dining out. Consumers thus far haven't spent as much this holiday shopping season as they have in previous years, according to credit and debit card data, and last month U.S. employers added jobs at the slowest pace since April. Restaurants, bars and retailers all cut jobs in November. Responding to similar pressures, the European Central Bank announced Thursday that it will ramp up its bond-buying program to try to hold down longer-term interest rates to spur borrowing and spending.

AI Weekly: Announcing our 'Automation and jobs in the new normal' special issue


Aside from staying alive and healthy, the biggest concern most people have during the pandemic is the future of their jobs. Unemployment in the U.S. has skyrocketed, from 5.8 million in February 2020 to 16.3 million in July 2020, according to the U.S. Bureau of Labor Statistics. But it's not only the lost jobs that are reshaping work in the wake of COVID-19; the nature of many of the remaining jobs has changed, as remote work becomes the norm. And in the midst of it all, automation has become potentially a threat to some workers and a salvation to others. In our upcoming special issue, titled "Automation and jobs in the new normal," we examine this tension and explore the good, bad, and unknown of how automation could affect jobs in the immediate and near future.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.