Goto

Collaborating Authors

Results


Detection of COVID -- 19 using Deep Learning

#artificialintelligence

"Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2". "The disease first originated in December 2019 from Wuhan, China and since then it has spread globally across the world affecting more than 200 countries. The impact is such that the World Health Organization(WHO) has declared the ongoing pandemic of COVID-19 a Public Health Emergency of International Concern." As of 29th April, there are a total of 31,30,191 cases with 2,17,674 deaths in more than 200 countries across the world. So, in this particular scenario, one primary thing that needs to be done and has already started in the majority of the countries is Manual testing, so that the true situation can be understood and appropriate decisions can be taken.


COVID-19 detection in CT and CXR images using deep learning models - Biogerontology

#artificialintelligence

Infectious diseases pose a threat to human life and could affect the whole world in a very short time. Corona-2019 virus disease (COVID-19) is an example of such harmful diseases. COVID-19 is a pandemic of an emerging infectious disease, called coronavirus disease 2019 or COVID-19, caused by the coronavirus SARS-CoV-2, which first appeared in December 2019 in Wuhan, China, before spreading around the world on a very large scale. The continued rise in the number of positive COVID-19 cases has disrupted the health care system in many countries, creating a lot of stress for governing bodies around the world, hence the need for a rapid way to identify cases of this disease. Medical imaging is a widely accepted technique for early detection and diagnosis of the disease which includes different techniques such as Chest X-ray (CXR), Computed Tomography (CT) scan, etc.


COVID-19 detection in CT and CXR images using deep learning models

#artificialintelligence

Infectious diseases pose a threat to human life and could affect the whole world in a very short time. Corona-2019 virus disease (COVID-19) is an example of such harmful diseases. COVID-19 is a pandemic of an emerging infectious disease, called coronavirus disease 2019 or COVID-19, caused by the coronavirus SARS-CoV-2, which first appeared in December 2019 in Wuhan, China, before spreading around the world on a very large scale. The continued rise in the number of positive COVID-19 cases has disrupted the health care system in many countries, creating a lot of stress for governing bodies around the world, hence the need for a rapid way to identify cases of this disease. Medical imaging is a widely accepted technique for early detection and diagnosis of the disease which includes different techniques such as Chest X-ray (CXR), Computed Tomography (CT) scan, etc.


Classification of COVID-19 in Chest CT Images using Convolutional Support Vector Machines

#artificialintelligence

Purpose: Coronavirus 2019 (COVID-19), which emerged in Wuhan, China and affected the whole world, has cost the lives of thousands of people. Manual diagnosis is inefficient due to the rapid spread of this virus. For this reason, automatic COVID-19 detection studies are carried out with the support of artificial intelligence algorithms. Methods: In this study, a deep learning model that detects COVID-19 cases with high performance is presented. The proposed method is defined as Convolutional Support Vector Machine (CSVM) and can automatically classify Computed Tomography (CT) images.


How Might AI and Chest Imaging Help Unravel COVID-19's Mysteries?

#artificialintelligence

Artificial intelligence (AI) has the potential to expand the role of chest imaging in COVID-19 beyond diagnosis to enable risk stratification, treatment monitoring, and discovery of novel therapeutic targets. AI's power to generate models from large volumes of information – fusing molecular, clinical, epidemiological, and imaging data – may accelerate solutions to detect, contain, and treat COVID-19. Two healthcare workers fell ill in Wuhan, China, where the first Coronavirus Disease 2019 (COVID-19) case was reported. Both were 29 years old and were hospitalized after contracting the virus. One survived, the other died. In a global pandemic that has suddenly pushed doctors, scientists, and healthcare workers to the frontlines, why some patients are falling critically ill while others have minimal or no symptoms is one of the most mysterious aspects of the disease caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2).


CoroNet: A Deep Neural Network for Detection and Diagnosis of Covid-19 from Chest X-ray Images

arXiv.org Machine Learning

The novel Coronavirus also called Covid-19 originated in Wuhan, China in December 2019 and has now spread across the world. It has so far infected around 1.8 million people and claimed approximately 114698 lives overall. As the number of cases are rapidly increasing, most of the countries are facing shortage of testing kits and resources. The limited quantity of testing kits and increasing number of daily cases encouraged us to come up with a Deep Learning model that can aid radiologists and clinicians in detecting Covid-19 cases using chest X-rays. Therefore, in this study, we propose CoroNet, a Deep Convolutional Neural Network model to automatically detect Covid-19 infection from chest X-ray images. The deep model called CoroNet has been trained and tested on a dataset prepared by collecting Covid-19 and other chest pneumonia X-ray images from two different publically available databases. The experimental results show that our proposed model achieved an overall accuracy of 89.5%, and more importantly the precision and recall rate for Covid-19 cases are 97% and 100%. The preliminary results of this study look promising which can be further improved as more training data becomes available. Overall, the proposed model substantially advances the current radiology based methodology and during Covid-19 pandemic, it can be very helpful tool for clinical practitioners and radiologists to aid them in diagnosis, quantification and follow-up of Covid-19 cases.


Diagnosing COVID-19 from X-Ray and Images using Deep Learning Algorithms Learn Neural Networks

#artificialintelligence

Throughout history, epidemics and chronic diseases have claimed the lives of many people and caused major crises that have taken a long time to overcome. The 2019 novel coronavirus (COVID-19) pandemic appeared in Wuhan, China in December 2019 and has become a serious public health problem worldwide. It is an acute resolved disease, but it can also be deadly, with a 2% case fatality rate. The early and automatic diagnosis of Covid-19 may be beneficial for timely referral of the patient to quarantine, and monitoring of the spread of the disease. Some tests requiring significant time to produce results (days), and a projected up to 30% false positive rate, other timely approaches to diagnosis are worthy of investigation.


DeepMind's Protein Folding AI Is Going After Coronavirus

#artificialintelligence

In late December last year, Dr. Li Wenliang began warning officials about a novel coronavirus in Wuhan, China, but was silenced by the police before tragically succumbing to the disease two months later. Meanwhile, almost simultaneously, a computer server halfway across the world started issuing worrying alerts of a potential new outbreak. The server runs software by BlueDot, a company based in San Francisco that uses AI to monitor infectious disease outbreaks for signs of early trouble. Not enough people listened to either human expertise or AI. Then cases skyrocketed in Wuhan and spread across the world, and people had to take note.