Collaborating Authors


AI-based system shows promise in tuberculosis detection


An artificial intelligence (AI) system detects tuberculosis (TB) in chest X-rays at a level comparable to radiologists, according to a study published in Radiology. Researchers said the AI system may be able to aid screening in areas with limited radiologist resources. TB is an infectious disease of the lungs that kills more than a million people worldwide every year. The COVID-19 pandemic has exacerbated the problem, with recent reports indicating that 21% fewer people received care for TB in 2020 than in 2019. Almost 90% of the active TB infections occur in about 30 countries, many with scarce resources needed to address this public health problem.

Helicobacter pylori (H. pylori) risk factor analysis and prevalence prediction: a machine learning-based approach - BMC Infectious Diseases


Although previous epidemiological studies have examined the potential risk factors that increase the likelihood of acquiring Helicobacter pylori infections, most of these analyses have utilized conventional statistical models, including logistic regression, and have not benefited from advanced machine learning techniques. We examined H. pylori infection risk factors among school children using machine learning algorithms to identify important risk factors as well as to determine whether machine learning can be used to predict H. pylori infection status. We applied feature selection and classification algorithms to data from a school-based cross-sectional survey in Ethiopia. The data set included 954 school children with 27 sociodemographic and lifestyle variables. We conducted five runs of tenfold cross-validation on the data. We combined the results of these runs for each combination of feature selection (e.g., Information Gain) and classification (e.g., Support Vector Machines) algorithms. The XGBoost classifier had the highest accuracy in predicting H. pylori infection status with an accuracy of 77%—a 13% improvement from the baseline accuracy of guessing the most frequent class (64% of the samples were H. Pylori negative.) K-Nearest Neighbors showed the worst performance across all classifiers. A similar performance was observed using the F1-score and area under the receiver operating curve (AUROC) classifier evaluation metrics. Among all features, place of residence (with urban residence increasing risk) was the most common risk factor for H. pylori infection, regardless of the feature selection method choice. Additionally, our machine learning algorithms identified other important risk factors for H. pylori infection, such as; electricity usage in the home, toilet type, and waste disposal location. Using a 75% cutoff for robustness, machine learning identified five of the eight significant features found by traditional multivariate logistic regression. However, when a lower robustness threshold is used, machine learning approaches identified more H. pylori risk factors than multivariate logistic regression and suggested risk factors not detected by logistic regression. This study provides evidence that machine learning approaches are positioned to uncover H. pylori infection risk factors and predict H. pylori infection status. These approaches identify similar risk factors and predict infection with comparable accuracy to logistic regression, thus they could be used as an alternative method.

AI helps identify areas in need of emergency aid


In a recent study published in the journal Nature, researchers developed and evaluated an approach that used machine-learning algorithms to analyze mobile phone and satellite data to estimate poverty. They aimed to optimize the'Novissi' flagship emergency social assistance program in Togo, West Africa, providing subsistence cash relief to those most affected by COVID-19. Study: Machine learning and phone data can improve targeting of humanitarian aid. The coronavirus disease 2019 (COVID-19) pandemic has had devastating consequences in low- and lower-middle-income countries (LMICs). The living standards of the most economically vulnerable individuals have further worsened with a transition toward extreme poverty.

State of AI Ethics Report (Volume 6, February 2022) Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.

25 Industries & Technologies That Will Shape The Post-Virus World


In industries from healthcare to education to finance to manufacturing, quarantine and extended work-from-home forced companies to use technology to reimagine nearly every facet of their operations. As the world reopens in fits and starts, we analyze the industries poised to thrive in a post-Covid world. As the Covid-19 pandemic has charted its unprecedented path around the world, it's carried with it the question: What will Covid-19's legacy be? From healthcare to education to entertainment to manufacturing, technology innovators are stepping forward to help answer that question. "Crisis can be… a catalyst or can speed up changes that are on the way -- it almost can serve as an accelerant." In the wake of the outbreak, everything from doctors appointments to schooling to workouts went online. As more people have worked, learned, banked, exercised, relaxed, and even sought medical care from home during Covid-19, they have gotten a crash course in just how much can be accomplished at ...

Determining evolution of COVID-19 mortality rates using machine-learning


In a recent study posted to the medRxiv* preprint server, a team of researchers predicts the evolution of coronavirus disease 2019 (COVID-19) mortality rates across countries using a biological science-guided machine learning-based approach. However, a study exploring multiple factors affecting COVID-19 mortality rates individually and interdependently is needed. In the current study, researchers used a novel Fast Fourier Transformation (FFT) driven machine-learning algorithm to analyze the publically available data of COVID-19 mortality rate from 141 countries. They assessed the impact of eight biological and socioeconomic factors such as alcohol consumption, diabetes prevalence, gross domestic product (GDP) per capita, the global health index, meat consumption, milk consumption, PM2.5, and population density on the COVID-19 mortality rates. The 141 countries assessed in the current study varied in size and population and spanned across five continents.

A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling Machine Learning

Hybrid methods have been shown to outperform pure statistical and pure deep learning methods at forecasting tasks and quantifying the associated uncertainty with those forecasts (prediction intervals). One example is Exponential Smoothing Recurrent Neural Network (ES-RNN), a hybrid between a statistical forecasting model and a recurrent neural network variant. ES-RNN achieves a 9.4\% improvement in absolute error in the Makridakis-4 Forecasting Competition. This improvement and similar outperformance from other hybrid models have primarily been demonstrated only on univariate datasets. Difficulties with applying hybrid forecast methods to multivariate data include ($i$) the high computational cost involved in hyperparameter tuning for models that are not parsimonious, ($ii$) challenges associated with auto-correlation inherent in the data, as well as ($iii$) complex dependency (cross-correlation) between the covariates that may be hard to capture. This paper presents Multivariate Exponential Smoothing Long Short Term Memory (MES-LSTM), a generalized multivariate extension to ES-RNN, that overcomes these challenges. MES-LSTM utilizes a vectorized implementation. We test MES-LSTM on several aggregated coronavirus disease of 2019 (COVID-19) morbidity datasets and find our hybrid approach shows consistent, significant improvement over pure statistical and deep learning methods at forecast accuracy and prediction interval construction.

Counterfactual Temporal Point Processes Artificial Intelligence

Machine learning models based on temporal point processes are the state of the art in a wide variety of applications involving discrete events in continuous time. However, these models lack the ability to answer counterfactual questions, which are increasingly relevant as these models are being used to inform targeted interventions. In this work, our goal is to fill this gap. To this end, we first develop a causal model of thinning for temporal point processes that builds upon the Gumbel-Max structural causal model. This model satisfies a desirable counterfactual monotonicity condition, which is sufficient to identify counterfactual dynamics in the process of thinning. Then, given an observed realization of a temporal point process with a given intensity function, we develop a sampling algorithm that uses the above causal model of thinning and the superposition theorem to simulate counterfactual realizations of the temporal point process under a given alternative intensity function. Simulation experiments using synthetic and real epidemiological data show that the counterfactual realizations provided by our algorithm may give valuable insights to enhance targeted interventions.

Public Policymaking for International Agricultural Trade using Association Rules and Ensemble Machine Learning Artificial Intelligence

International economics has a long history of improving our understanding of factors causing trade, and the consequences of free flow of goods and services across countries. The recent shocks to the free trade regime, especially trade disputes among major economies, as well as black swan events, such as trade wars and pandemics, raise the need for improved predictions to inform policy decisions. AI methods are allowing economists to solve such prediction problems in new ways. In this manuscript, we present novel methods that predict and associate food and agricultural commodities traded internationally. Association Rules (AR) analysis has been deployed successfully for economic scenarios at the consumer or store level, such as for market basket analysis. In our work however, we present analysis of imports and exports associations and their effects on commodity trade flows. Moreover, Ensemble Machine Learning methods are developed to provide improved agricultural trade predictions, outlier events' implications, and quantitative pointers to policy makers.

COVID-19: quality of life and artificial intelligence


Bongs Lainjo Cybermatic International, Montréal, QC, Canada Correspondence: Bongs Lainjo Email [email protected] Abstract: The objective of the study is to conduct an exploratory review of the Covid-19 pandemic by focusing on the theme of Covid-19 pandemic morbidity and mortality, considering the dynamics of artificial intelligence and quality of life (QOL). The methods used in this research paper include a review of literature, anecdotal evidence, and reports on the morbidity of COVID-19, including the scope of its devastating effects in different countries such as the US, Africa, UK, China, and Brazil, among others. The findings of this study suggested that the devastating effects of the coronavirus are felt across different vulnerable populations. These include the elderly, front-line workers, marginalized communities, visible minorities, and more. The challenge in Africa is especially daunting because of inadequate infrastructure, and financial and human resources, among others. Besides, AI technology is being successfully used by scientists to enhance the development process of vaccines and drugs. However, its usage in other stages of the pandemic has not been adequately explored. Ultimately, it has been concluded that the effects of the Covid-19 are producing unprecedented and catastrophic outcomes in many countries. With a few exceptions, the common and current intervention approach is driven by many factors, including the compilation of relevant reliable and compelling data sets. On a positive note, the compelling trailblazing and catalytic contributions of AI towards the rapid discovery of COVID-19 vaccines are a good indication of future technological innovations and their effectiveness. History has a way of reminding us that while the good times are great, a business as usual comes with many unforeseen risks and challenges. On a positive note, stress, anxiety, and other mental health issues have turned around many mindsets in certain groups. There are now significant and unprecedented levels of compassion, empathy, and more, originating from many populations. One such instance, wherein significant challenges were posed to the community is at the time of the First World War. Besides, there was the Spanish plague, there was the second world war and for the last 60 plus years, we have had to live in a world of misgivings; ranging from populism to political unrests and instability in several parts of the world, primarily the Middle East and some parts of Asia.