Goto

Collaborating Authors

Results


TE-ESN: Time Encoding Echo State Network for Prediction Based on Irregularly Sampled Time Series Data

arXiv.org Artificial Intelligence

Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications. For more accurate prediction, the methods had better grasp more data characteristics. Different from ordinary time series, ISTS is characterised with irregular time intervals of intra-series and different sampling rates of inter-series. However, existing methods have suboptimal predictions due to artificially introducing new dependencies in a time series and biasedly learning relations among time series when modeling these two characteristics. In this work, we propose a novel Time Encoding (TE) mechanism. TE can embed the time information as time vectors in the complex domain. It has the the properties of absolute distance and relative distance under different sampling rates, which helps to represent both two irregularities of ISTS. Meanwhile, we create a new model structure named Time Encoding Echo State Network (TE-ESN). It is the first ESNs-based model that can process ISTS data. Besides, TE-ESN can incorporate long short-term memories and series fusion to grasp horizontal and vertical relations. Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines and has better reservoir property.


Artificial Intelligence–Enabled ECG may help Detect Aortic Stenosis, Finds Study

#artificialintelligence

Early detection of aortic stenosis (AS) is becoming increasingly important with a better outcome after aortic valve replacement in asymptomatic severe AS patients and a poor outcome in moderate AS. Therefore, researchers of the Mayo Clinic, USA, developed an AI-ECG using a convolutional neural network to identify patients with moderate to severe AS. It was a retrospective study in which researchers identified 258 607 adults [mean age 63 16.3 years; women 122 790 (48%)] with echocardiography and an ECG performed within 180 days using the Mayo Clinic Unified Data Platform (UDP). The researchers tested the use of an AI-ECG to help identify patients with moderate to severe aortic stenosis (AS). Using echocardiography data, the researchers identified moderate to severe AS in 9723 (3.7%) patients. They performed Artificial intelligence training in 129 788 (50%), validation in 25 893 (10%), and testing in 102 926 (40%) in randomly selected subjects.


Deep Chaos Synchronization

arXiv.org Artificial Intelligence

In this study, we address the problem of chaotic synchronization over a noisy channel by introducing a novel Deep Chaos Synchronization (DCS) system using a Convolutional Neural Network (CNN). Conventional Deep Learning (DL) based communication strategies are extremely powerful but training on large data sets is usually a difficult and time-consuming procedure. To tackle this challenge, DCS does not require prior information or large data sets. In addition, we provide a novel Recurrent Neural Network (RNN)-based chaotic synchronization system for comparative analysis. The results show that the proposed DCS architecture is competitive with RNN-based synchronization in terms of robustness against noise, convergence, and training. Hence, with these features, the DCS scheme will open the door for a new class of modulator schemes and meet the robustness against noise, convergence, and training requirements of the Ultra Reliable Low Latency Communications (URLLC) and Industrial Internet of Things (IIoT).


Automated Seizure Detection and Seizure Type Classification From Electroencephalography With a Graph Neural Network and Self-Supervised Pre-Training

arXiv.org Artificial Intelligence

Automated seizure detection and classification from electroencephalography (EEG) can greatly improve the diagnosis and treatment of seizures. While prior studies mainly used convolutional neural networks (CNNs) that assume image-like structure in EEG signals or spectrograms, this modeling choice does not reflect the natural geometry of or connectivity between EEG electrodes. In this study, we propose modeling EEGs as graphs and present a graph neural network for automated seizure detection and classification. In addition, we leverage unlabeled EEG data using a self-supervised pre-training strategy. Our graph model with self-supervised pre-training significantly outperforms previous state-of-the-art CNN and Long Short-Term Memory (LSTM) models by 6.3 points (7.8%) in Area Under the Receiver Operating Characteristic curve (AUROC) for seizure detection and 6.3 points (9.2%) in weighted F1-score for seizure type classification. Ablation studies show that our graph-based modeling approach significantly outperforms existing CNN or LSTM models, and that self-supervision helps further improve the model performance. Moreover, we find that self-supervised pre-training substantially improves model performance on combined tonic seizures, a low-prevalence seizure type. Furthermore, our model interpretability analysis suggests that our model is better at identifying seizure regions compared to an existing CNN. In summary, our graph-based modeling approach integrates domain knowledge about EEG, sets a new state-of-the-art for seizure detection and classification on a large public dataset (5,499 EEG files), and provides better ability to identify seizure regions.


Continuous Weight Balancing

arXiv.org Artificial Intelligence

We propose a simple method by which to choose sample weights for problems with highly imbalanced or skewed traits. Rather than naively discretizing regression labels to find binned weights, we take a more principled approach - we derive sample weights from the transfer function between an estimated source and specified target distributions. Our method outperforms both unweighted and discretelyweighted models on both regression and classification tasks. Real-world datasets are heterogenous and frequently skewed. Oftentimes, the data points of interest, such as disease-positive patients in medical datasets (Rahman & Davis, 2013), are rare, and disproportionately outnumbered.


Self-supervised representation learning from 12-lead ECG data

arXiv.org Machine Learning

We put forward a comprehensive assessment of self-supervised representation learning from short segments of clinical 12-lead electrocardiography (ECG) data. To this end, we explore adaptations of state-of-the-art self-supervised learning algorithms from computer vision (SimCLR, BYOL, SwAV) and speech (CPC). In a first step, we learn contrastive representations and evaluate their quality based on linear evaluation performance on a downstream classification task. For the best-performing method, CPC, we find linear evaluation performances only 0.8% below supervised performance. In a second step, we analyze the impact of self-supervised pretraining on finetuned ECG classifiers as compared to purely supervised performance and find improvements in downstream performance of more than 1%, label efficiency, as well as an increased robustness against physiological noise. All experiments are carried out exclusively on publicly available datasets, the to-date largest collection used for self-supervised representation learning from ECG data, to foster reproducible research in the field of ECG representation learning.


Am I fit for this physical activity? Neural embedding of physical conditioning from inertial sensors

arXiv.org Artificial Intelligence

Inertial Measurement Unit (IMU) sensors are becoming increasingly ubiquitous in everyday devices such as smartphones, fitness watches, etc. As a result, the array of health-related applications that tap onto this data has been growing, as well as the importance of designing accurate prediction models for tasks such as human activity recognition (HAR). However, one important task that has received little attention is the prediction of an individual's heart rate when undergoing a physical activity using IMU data. This could be used, for example, to determine which activities are safe for a person without having him/her actually perform them. We propose a neural architecture for this task composed of convolutional and LSTM layers, similarly to the state-of-the-art techniques for the closely related task of HAR. However, our model includes a convolutional network that extracts, based on sensor data from a previously executed activity, a physical conditioning embedding (PCE) of the individual to be used as the LSTM's initial hidden state. We evaluate the proposed model, dubbed PCE-LSTM, when predicting the heart rate of 23 subjects performing a variety of physical activities from IMU-sensor data available in public datasets (PAMAP2, PPG-DaLiA). For comparison, we use as baselines the only model specifically proposed for this task, and an adapted state-of-the-art model for HAR. PCE-LSTM yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use the two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available to rectify heart rate measurement errors caused by movement, outperforming the state-of-the-art deep learning baselines by more than 30%.


Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges

arXiv.org Machine Learning

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.


Compacting Deep Neural Networks for Internet of Things: Methods and Applications

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) have shown great success in completing complex tasks. However, DNNs inevitably bring high computational cost and storage consumption due to the complexity of hierarchical structures, thereby hindering their wide deployment in Internet-of-Things (IoT) devices, which have limited computational capability and storage capacity. Therefore, it is a necessity to investigate the technologies to compact DNNs. Despite tremendous advances in compacting DNNs, few surveys summarize compacting-DNNs technologies, especially for IoT applications. Hence, this paper presents a comprehensive study on compacting-DNNs technologies. We categorize compacting-DNNs technologies into three major types: 1) network model compression, 2) Knowledge Distillation (KD), 3) modification of network structures. We also elaborate on the diversity of these approaches and make side-by-side comparisons. Moreover, we discuss the applications of compacted DNNs in various IoT applications and outline future directions.


Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases)

arXiv.org Artificial Intelligence

Diagnosis of chronic diseases and assistance in medical decisions is based on machine learning algorithms. In this paper, we review the classification algorithms used in the health care system (chronic diseases) and present the neural network-based Ensemble learning method. We briefly describe the commonly used algorithms and describe their critical properties. Materials and Methods: In this study, modern classification algorithms used in healthcare, examine the principles of these methods and guidelines, and to accurately diagnose and predict chronic diseases, superior machine learning algorithms with the neural network-based ensemble learning Is used. To do this, we use experimental data, real data on chronic patients (diabetes, heart, cancer) available on the UCI site. Results: We found that group algorithms designed to diagnose chronic diseases can be more effective than baseline algorithms. It also identifies several challenges to further advancing the classification of machine learning in the diagnosis of chronic diseases. Conclusion: The results show the high performance of the neural network-based Ensemble learning approach for the diagnosis and prediction of chronic diseases, which in this study reached 98.5, 99, and 100% accuracy, respectively.