Collaborating Authors


Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand Forecasting Machine Learning

We present a winning method of the IEEE DataPort Competition on Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm. The day-ahead load forecasting approach is based on online forecast combination of multiple point prediction models. It contains four steps: i) data cleaning and preprocessing, ii) a holiday adjustment procedure, iii) training of individual forecasting models, iv) forecast combination by smoothed Bernstein Online Aggregation (BOA). The approach is flexible and can quickly adopt to new energy system situations as they occurred during and after COVID-19 shutdowns. The pool of individual prediction models ranges from rather simple time series models to sophisticated models like generalized additive models (GAMs) and high-dimensional linear models estimated by lasso. They incorporate autoregressive, calendar and weather effects efficiently. All steps contain novel concepts that contribute to the excellent forecasting performance of the proposed method. This holds particularly for the holiday adjustment procedure and the fully adaptive smoothed BOA approach.

Demand Forecasting For Retail: A Deep Dive


I know for sure that human behavior could be predicted with data science and machine learning. Taking a look at human behavior from a sales data analysis perspective, we can get more valuable insights than from social surveys. In this article, I want to show how machine learning approaches can help with customer demand forecasting. Since I have experience in building forecasting models for retail field products, I'll use a retail business as an example. Moreover, considering uncertainties related to the COVID-19 pandemic, I'll also describe how to enhance forecasting accuracy.

Study: 73% of Retailers Believe Artificial Intelligence Can Add Significant Value to Demand Forecasting


LLamasoft published the results of a global retail supply chain study, which revealed that 73% of retailers believe artificial intelligence (AI) and machine learning can add significant value to their demand forecasting processes. Meanwhile, over half say it will improve 8 other critical supply chain capabilities. The research also found that while 56% of overperforming retailers, also known as'retail winners', use technology to model contingency plans for severe supply chain interruptions, a mere 31% of retailers who are not overperforming do the same. Overall, 56% of retailers surveyed are struggling with the ability to respond to rapid shifts, and the lack of flexibility has cost them during the disruptions such as COVID-19, with many seeing a huge drop in revenue as a result. In addition, 73% of'retail winners' have the foresight and ability to monitor capacity, which allows them to prepare for sudden shifts in demand and supply, compared to 35% of'other' or'under-performing' retailers.