Goto

Collaborating Authors

Results


Mental Stress Detection using Data from Wearable and Non-wearable Sensors: A Review

arXiv.org Artificial Intelligence

This paper presents a comprehensive review of methods covering significant subjective and objective human stress detection techniques available in the literature. The methods for measuring human stress responses could include subjective questionnaires (developed by psychologists) and objective markers observed using data from wearable and non-wearable sensors. In particular, wearable sensor-based methods commonly use data from electroencephalography, electrocardiogram, galvanic skin response, electromyography, electrodermal activity, heart rate, heart rate variability, and photoplethysmography both individually and in multimodal fusion strategies. Whereas, methods based on non-wearable sensors include strategies such as analyzing pupil dilation and speech, smartphone data, eye movement, body posture, and thermal imaging. Whenever a stressful situation is encountered by an individual, physiological, physical, or behavioral changes are induced which help in coping with the challenge at hand. A wide range of studies has attempted to establish a relationship between these stressful situations and the response of human beings by using different kinds of psychological, physiological, physical, and behavioral measures. Inspired by the lack of availability of a definitive verdict about the relationship of human stress with these different kinds of markers, a detailed survey about human stress detection methods is conducted in this paper. In particular, we explore how stress detection methods can benefit from artificial intelligence utilizing relevant data from various sources. This review will prove to be a reference document that would provide guidelines for future research enabling effective detection of human stress conditions.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


When Creators Meet the Metaverse: A Survey on Computational Arts

arXiv.org Artificial Intelligence

The metaverse, enormous virtual-physical cyberspace, has brought unprecedented opportunities for artists to blend every corner of our physical surroundings with digital creativity. This article conducts a comprehensive survey on computational arts, in which seven critical topics are relevant to the metaverse, describing novel artworks in blended virtual-physical realities. The topics first cover the building elements for the metaverse, e.g., virtual scenes and characters, auditory, textual elements. Next, several remarkable types of novel creations in the expanded horizons of metaverse cyberspace have been reflected, such as immersive arts, robotic arts, and other user-centric approaches fuelling contemporary creative outputs. Finally, we propose several research agendas: democratising computational arts, digital privacy, and safety for metaverse artists, ownership recognition for digital artworks, technological challenges, and so on. The survey also serves as introductory material for artists and metaverse technologists to begin creations in the realm of surrealistic cyberspace.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence

arXiv.org Artificial Intelligence

Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.


From Human-Computer Interaction to Human-AI Interaction: New Challenges and Opportunities for Enabling Human-Centered AI

arXiv.org Artificial Intelligence

While AI has benefited humans, it may also harm humans if not appropriately developed. We conducted a literature review of current related work in developing AI systems from an HCI perspective. Different from other approaches, our focus is on the unique characteristics of AI technology and the differences between non-AI computing systems and AI systems. We further elaborate on the human-centered AI (HCAI) approach that we proposed in 2019. Our review and analysis highlight unique issues in developing AI systems which HCI professionals have not encountered in non-AI computing systems. To further enable the implementation of HCAI, we promote the research and application of human-AI interaction (HAII) as an interdisciplinary collaboration. There are many opportunities for HCI professionals to play a key role to make unique contributions to the main HAII areas as we identified. To support future HCI practice in the HAII area, we also offer enhanced HCI methods and strategic recommendations. In conclusion, we believe that promoting the HAII research and application will further enable the implementation of HCAI, enabling HCI professionals to address the unique issues of AI systems and develop human-centered AI systems.


A Novel Visualization System of Using Augmented Reality in Knee Replacement Surgery: Enhanced Bidirectional Maximum Correntropy Algorithm

arXiv.org Artificial Intelligence

Background and aim: Image registration and alignment are the main limitations of augmented reality-based knee replacement surgery. This research aims to decrease the registration error, eliminate outcomes that are trapped in local minima to improve the alignment problems, handle the occlusion, and maximize the overlapping parts. Methodology: markerless image registration method was used for Augmented reality-based knee replacement surgery to guide and visualize the surgical operation. While weight least square algorithm was used to enhance stereo camera-based tracking by filling border occlusion in right to left direction and non-border occlusion from left to right direction. Results: This study has improved video precision to 0.57 mm~0.61 mm alignment error. Furthermore, with the use of bidirectional points, for example, forwards and backwards directional cloud point, the iteration on image registration was decreased. This has led to improve the processing time as well. The processing time of video frames was improved to 7.4~11.74 fps. Conclusions: It seems clear that this proposed system has focused on overcoming the misalignment difficulty caused by movement of patient and enhancing the AR visualization during knee replacement surgery. The proposed system was reliable and favorable which helps in eliminating alignment error by ascertaining the optimal rigid transformation between two cloud points and removing the outliers and non-Gaussian noise. The proposed augmented reality system helps in accurate visualization and navigation of anatomy of knee such as femur, tibia, cartilage, blood vessels, etc.


AI-Augmented Behavior Analysis for Children with Developmental Disabilities: Building Towards Precision Treatment

arXiv.org Artificial Intelligence

Autism spectrum disorder is a developmental disorder characterized by significant social, communication, and behavioral challenges. Individuals diagnosed with autism, intellectual, and developmental disabilities (AUIDD) typically require long-term care and targeted treatment and teaching. Effective treatment of AUIDD relies on efficient and careful behavioral observations done by trained applied behavioral analysts (ABAs). However, this process overburdens ABAs by requiring the clinicians to collect and analyze data, identify the problem behaviors, conduct pattern analysis to categorize and predict categorical outcomes, hypothesize responsiveness to treatments, and detect the effects of treatment plans. Successful integration of digital technologies into clinical decision-making pipelines and the advancements in automated decision-making using Artificial Intelligence (AI) algorithms highlights the importance of augmenting teaching and treatments using novel algorithms and high-fidelity sensors. In this article, we present an AI-Augmented Learning and Applied Behavior Analytics (AI-ABA) platform to provide personalized treatment and learning plans to AUIDD individuals. By defining systematic experiments along with automated data collection and analysis, AI-ABA can promote self-regulative behavior using reinforcement-based augmented or virtual reality and other mobile platforms. Thus, AI-ABA could assist clinicians to focus on making precise data-driven decisions and increase the quality of individualized interventions for individuals with AUIDD.


Augmented Reality Are Changing Human Resources

#artificialintelligence

No aspect of the business world is immune to some of the technological developments transforming the corporate landscape. In particular, Big Data, Artificial Intelligence, and Augmented Reality have been embraced for the past decade with increasing penetration into companies large and small. The HR department wouldn't necessarily be the first place you'd think of when it comes to a part of a business impacted by Artificial Intelligence (AI) technology. But AI-based solutions are making inroads in HR, and that process will only accelerate in the coming years. The principles of AI and machine learning depend on the ability to apply main machine learning algorithms by using a combination of historical data and access to real-world systems.


Machine learning technique helps wearable devices get better at diagnosing sleep disorders and quality

AIHub

Getting diagnosed with a sleep disorder or assessing quality of sleep is an often expensive and tricky proposition, involving sleep clinics where patients are hooked up to sensors and wires for monitoring. Wearable devices, such as the Fitbit and Apple Watch, offer less intrusive and more cost-effective sleeping monitoring, but the tradeoff can be inaccurate or imprecise sleep data. Researchers at the Georgia Institute of Technology are working to combine the accuracy of sleep clinics with the convenience of wearable computing by developing machine learning models, or smart algorithms, that provide better sleep measurement data as well as considerably faster, more energy-efficient software. The team is focusing on electrical ambient noise that is emitted by devices but that is often not audible and can interfere with sleep sensors on a wearable gadget. Leave the TV on at night, and the electrical signal – not the infomercial in the background – might mess with your sleep tracker.