Collaborating Authors


"Artificial Intelligence" Science-Research, January 2022, Week 3 -- summary from Europe PMC


Background Liver is one of the most typical metastatic sites of colon cancer cells and liver metastasis determines subsequent therapy along with prognosis of patients, particularly in T1 patients. There is still no effective model to predict the danger of LM in T1 CRC patients. Objectives Chest radiographs are commonly performed in emergency units, yet the interpretation calls for radiology experience. Presently, top quality English-Chinese parallel corpus is presently in a phase of shortage. After that, the multilingual dictionary summed up by the translation model is combined with the language model, unsupervised translation model is initialized, unsupervised English-Chinese neural machine translation model is optimized with the back translation technique.

New model improves accuracy of machine learning in COVID-19 diagnosis while preserving privacy


Researchers in the UK and China have developed an artificial intelligence (AI) model that can diagnose COVID-19 as well as a panel of professional radiologists, while preserving the privacy of patient data. The international team, led by the University of Cambridge and the Huazhong University of Science and Technology, used a technique called federated learning to build their model. Using federated learning, an AI model in one hospital or country can be independently trained and verified using a dataset from another hospital or country, without data sharing. The researchers based their model on more than 9,000 CT scans from approximately 3,300 patients in 23 hospitals in the UK and China. Their results, reported in the journal Nature Machine Intelligence, provide a framework where AI techniques can be made more trustworthy and accurate, especially in areas such as medical diagnosis where privacy is vital.

Natural Language Processing for Smart Healthcare Artificial Intelligence

Smart healthcare has achieved significant progress in recent years. Emerging artificial intelligence (AI) technologies enable various smart applications across various healthcare scenarios. As an essential technology powered by AI, natural language processing (NLP) plays a key role in smart healthcare due to its capability of analysing and understanding human language. In this work we review existing studies that concern NLP for smart healthcare from the perspectives of technique and application. We focus on feature extraction and modelling for various NLP tasks encountered in smart healthcare from a technical point of view. In the context of smart healthcare applications employing NLP techniques, the elaboration largely attends to representative smart healthcare scenarios, including clinical practice, hospital management, personal care, public health, and drug development. We further discuss the limitations of current works and identify the directions for future works.

BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports Artificial Intelligence

Radiology reports are the main form of communication between radiologists and other clinicians, and contain important information for patient care. However in order to use this information for research it is necessary to convert the raw text into structured data suitable for analysis. Domain specific contextual word embeddings have been shown to achieve impressive accuracy at such natural language processing tasks in medicine. In this work we pre-trained a contextual embedding BERT model using breast radiology reports and developed a classifier that incorporated the embedding with auxiliary global textual features in order to perform a section tokenization task. This model achieved a 98% accuracy at segregating free text reports into sections of information outlined in the Breast Imaging Reporting and Data System (BI-RADS) lexicon, a significant improvement over the Classic BERT model without auxiliary information. We then evaluated whether using section tokenization improved the downstream extraction of the following fields: modality/procedure, previous cancer, menopausal status, purpose of exam, breast density and background parenchymal enhancement. Using the BERT model pre-trained on breast radiology reports combined with section tokenization resulted in an overall accuracy of 95.9% in field extraction. This is a 17% improvement compared to an overall accuracy of 78.9% for field extraction for models without section tokenization and with Classic BERT embeddings. Our work shows the strength of using BERT in radiology report analysis and the advantages of section tokenization in identifying key features of patient factors recorded in breast radiology reports.

On the Opportunities and Risks of Foundation Models Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

AMMU -- A Survey of Transformer-based Biomedical Pretrained Language Models Artificial Intelligence

Transformer-based pretrained language models (PLMs) have started a new era in modern natural language processing (NLP). These models combine the power of transformers, transfer learning, and self-supervised learning (SSL). Following the success of these models in the general domain, the biomedical research community has developed various in-domain PLMs starting from BioBERT to the latest BioMegatron and CoderBERT models. We strongly believe there is a need for a survey paper that can provide a comprehensive survey of various transformer-based biomedical pretrained language models (BPLMs). In this survey, we start with a brief overview of foundational concepts like self-supervised learning, embedding layer and transformer encoder layers. We discuss core concepts of transformer-based PLMs like pretraining methods, pretraining tasks, fine-tuning methods, and various embedding types specific to biomedical domain. We introduce a taxonomy for transformer-based BPLMs and then discuss all the models. We discuss various challenges and present possible solutions. We conclude by highlighting some of the open issues which will drive the research community to further improve transformer-based BPLMs.

The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Machine Learning

The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore's Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today.

Human-centric Metric for Accelerating Pathology Reports Annotation Machine Learning

Pathology reports contain useful information such as the main involved organ, diagnosis, etc. These information can be identified from the free text reports and used for large-scale statistical analysis or serve as annotation for other modalities such as pathology slides images. However, manual classification for a huge number of reports on multiple tasks is labor-intensive. In this paper, we have developed an automatic text classifier based on BERT and we propose a human-centric metric to evaluate the model. According to the model confidence, we identify low-confidence cases that require further expert annotation and high-confidence cases that are automatically classified. We report the percentage of low-confidence cases and the performance of automatically classified cases. On the high-confidence cases, the model achieves classification accuracy comparable to pathologists. This leads a potential of reducing 80% to 98% of the manual annotation workload.

Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019) Artificial Intelligence

The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Focus Group on Artificial Intelligence for Health Artificial Intelligence

Artificial Intelligence (AI) - the phenomenon of machines being able to solve problems that require human intelligence - has in the past decade seen an enormous rise of interest due to significant advances in effectiveness and use. The health sector, one of the most important sectors for societies and economies worldwide, is particularly interesting for AI applications, given the ongoing digitalisation of all types of health information. The potential for AI assistance in the health domain is immense, because AI can support medical decision making at reduced costs, everywhere. However, due to the complexity of AI algorithms, it is difficult to distinguish good from bad AI-based solutions and to understand their strengths and weaknesses, which is crucial for clarifying responsibilities and for building trust. For this reason, the International Telecommunication Union (ITU) has established a new Focus Group on "Artificial Intelligence for Health" (FG-AI4H) in partnership with the World Health Organization (WHO). Health and care services are usually the responsibility of a government - even when provided through private insurance systems - and thus under the responsibility of WHO/ITU member states. FG-AI4H will identify opportunities for international standardization, which will foster the application of AI to health issues on a global scale. In particular, it will establish a standardized assessment framework with open benchmarks for the evaluation of AI-based methods for health, such as AI-based diagnosis, triage or treatment decisions.