Goto

Collaborating Authors

Results


Artificial Intelligence (AI) in Healthcare Market to Grow at a CAGR of 49.8% to reach US$ 107,797.82 Million from 2020 to 2027

#artificialintelligence

Artificial intelligence in healthcare is the use of machine-learning algorithms and software to analyze, process and present complex medical and health care data. It has been widely used to support clinical decisions, improve workflows and predict health outcomes. Thus, wide application of AI in the healthcare sector is likely to propel the growth of the market. The growth of the artificial intelligence in healthcare market is attributed to the rising application of artificial intelligence in healthcare, growing investment in AI healthcare start-ups, and increasing cross-industry partnerships and collaborations. However, dearth of skilled AI workforce and imprecise regulatory guidelines for medical software is the major factor hindering the market growth.


Multimodal Classification: Current Landscape, Taxonomy and Future Directions

arXiv.org Artificial Intelligence

Multimodal classification research has been gaining popularity in many domains that collect more data from multiple sources including satellite imagery, biometrics, and medicine. However, the lack of consistent terminology and architectural descriptions makes it difficult to compare different existing solutions. We address these challenges by proposing a new taxonomy for describing such systems based on trends found in recent publications on multimodal classification. Many of the most difficult aspects of unimodal classification have not yet been fully addressed for multimodal datasets including big data, class imbalance, and instance level difficulty. We also provide a discussion of these challenges and future directions.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


Artificial Intelligence in Healthcare: Lost In Translation?

arXiv.org Artificial Intelligence

Artificial intelligence (AI) in healthcare is a potentially revolutionary tool to achieve improved healthcare outcomes while reducing overall health costs. While many exploratory results hit the headlines in recent years there are only few certified and even fewer clinically validated products available in the clinical setting. This is a clear indication of failing translation due to shortcomings of the current approach to AI in healthcare. In this work, we highlight the major areas, where we observe current challenges for translation in AI in healthcare, namely precision medicine, reproducible science, data issues and algorithms, causality, and product development. For each field, we outline possible solutions for these challenges. Our work will lead to improved translation of AI in healthcare products into the clinical setting


Graph Intervention Networks for Causal Effect Estimation

arXiv.org Machine Learning

We address the estimation of conditional average treatment effects (CATEs) when treatments are graph-structured (e.g., molecular graphs of drugs). Given a weak condition on the effect, we propose a plug-in estimator that decomposes CATE estimation into separate, simpler optimization problems. Our estimator (a) isolates the causal estimands (reducing regularization bias), and (b) allows one to plug in arbitrary models for learning. In experiments with small-world and molecular graphs, we show that our approach outperforms prior approaches and is robust to varying selection biases.


MS2: Multi-Document Summarization of Medical Studies

arXiv.org Artificial Intelligence

To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our system's generated summaries. Data and models are available at https://github.com/allenai/ms2


The Healthy States of America: Creating a Health Taxonomy with Social Media

arXiv.org Artificial Intelligence

Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Deep Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomy's sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomy's structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.


MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset

arXiv.org Artificial Intelligence

The recent release of large-scale healthcare datasets has greatly propelled the research of data-driven deep learning models for healthcare applications. However, due to the nature of such deep black-boxed models, concerns about interpretability, fairness, and biases in healthcare scenarios where human lives are at stake call for a careful and thorough examinations of both datasets and models. In this work, we focus on MIMIC-IV (Medical Information Mart for Intensive Care, version IV), the largest publicly available healthcare dataset, and conduct comprehensive analyses of dataset representation bias as well as interpretability and prediction fairness of deep learning models for in-hospital mortality prediction. In terms of interpretabilty, we observe that (1) the best performing interpretability method successfully identifies critical features for mortality prediction on various prediction models; (2) demographic features are important for prediction. In terms of fairness, we observe that (1) there exists disparate treatment in prescribing mechanical ventilation among patient groups across ethnicity, gender and age; (2) all of the studied mortality predictors are generally fair while the IMV-LSTM (Interpretable Multi-Variable Long Short-Term Memory) model provides the most accurate and unbiased predictions across all protected groups. We further draw concrete connections between interpretability methods and fairness metrics by showing how feature importance from interpretability methods can be beneficial in quantifying potential disparities in mortality predictors.


Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond

arXiv.org Artificial Intelligence

Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made. This research field inspects the measures and models involved in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms can not manifest how and why a decision has been cast. This is particularly true of the most popular deep neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by the lack of explainability in these black-box models. The XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies, although in general these deep neural networks can return an arresting dividend in performance. The insufficient explainability and transparency in most existing AI systems can be one of the major reasons that successful implementation and integration of AI tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI solutions, from which we can envisage successful applications in a broader range of clinical questions.


Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy

arXiv.org Artificial Intelligence

Precision health leverages information from various sources, including omics, lifestyle, environment, social media, medical records, and medical insurance claims to enable personalized care, prevent and predict illness, and precise treatments. It extensively uses sensing technologies (e.g., electronic health monitoring devices), computations (e.g., machine learning), and communication (e.g., interaction between the health data centers). As health data contain sensitive private information, including the identity of patient and carer and medical conditions of the patient, proper care is required at all times. Leakage of these private information affects the personal life, including bullying, high insurance premium, and loss of job due to the medical history. Thus, the security, privacy of and trust on the information are of utmost importance. Moreover, government legislation and ethics committees demand the security and privacy of healthcare data. Herein, in the light of precision health data security, privacy, ethical and regulatory requirements, finding the best methods and techniques for the utilization of the health data, and thus precision health is essential. In this regard, firstly, this paper explores the regulations, ethical guidelines around the world, and domain-specific needs. Then it presents the requirements and investigates the associated challenges. Secondly, this paper investigates secure and privacy-preserving machine learning methods suitable for the computation of precision health data along with their usage in relevant health projects. Finally, it illustrates the best available techniques for precision health data security and privacy with a conceptual system model that enables compliance, ethics clearance, consent management, medical innovations, and developments in the health domain.