Goto

Collaborating Authors

Results


Neo4j Announces First Graph Machine Learning for the Enterprise

#artificialintelligence

Until now, few companies outside of Google and Facebook have had the AI foresight and resources to leverage graph embeddings. This powerful and innovative technique calculates the shape of the surrounding network for each piece of data inside of a graph, enabling far better machine learning predictions. Neo4j for Graph Data Science version 1.4 democratizes these innovations to upend the way enterprises make predictions in diverse scenarios from fraud detection to tracking customer or patient journey, to drug discovery and knowledge graph completion. Caption: Graph embeddings are a powerful tool to abstract the complex structures of graphs and reduce their dimensionality. This technique opens up a wide range of uses for graph-based machine learning.


Neo4j Announces First Graph Machine Learning for the Enterprise

#artificialintelligence

Neo4j, the leader in graph technology, announced the latest version of Neo4j for Graph Data Science, a breakthrough that democratizes advanced graph-based machine learning (ML) techniques by leveraging deep learning and graph convolutional neural networks. Until now, few companies outside of Google and Facebook have had the AI foresight and resources to leverage graph embeddings. This powerful and innovative technique calculates the shape of the surrounding network for each piece of data inside of a graph, enabling far better machine learning predictions. Neo4j for Graph Data Science version 1.4 democratizes these innovations to upend the way enterprises make predictions in diverse scenarios from fraud detection to tracking customer or patient journey, to drug discovery and knowledge graph completion. Neo4j for Graph Data Science version 1.4 is the first and only graph-native machine learning functionality commercially available for enterprises.


Neo4j Announces First Graph Machine Learning for the Enterprise

#artificialintelligence

Neo4j, the leader in graph technology, announced the latest version of Neo4j for Graph Data Science, a breakthrough that democratizes advanced graph-based machine learning (ML) techniques by leveraging deep learning and graph convolutional neural networks. Until now, few companies outside of Google and Facebook have had the AI foresight and resources to leverage graph embeddings. This powerful and innovative technique calculates the shape of the surrounding network for each piece of data inside of a graph, enabling far better machine learning predictions. Neo4j for Graph Data Science version 1.4 democratizes these innovations to upend the way enterprises make predictions in diverse scenarios from fraud detection to tracking customer or patient journey, to drug discovery and knowledge graph completion. Neo4j for Graph Data Science version 1.4 is the first and only graph-native machine learning functionality commercially available for enterprises.


Ethical Machine Learning in Health Care

arXiv.org Artificial Intelligence

The use of machine learning (ML) in health care raises numerous ethical concerns, especially as models can amplify existing health inequities. Here, we outline ethical considerations for equitable ML in the advancement of health care. Specifically, we frame ethics of ML in health care through the lens of social justice. We describe ongoing efforts and outline challenges in a proposed pipeline of ethical ML in health, ranging from problem selection to post-deployment considerations. We close by summarizing recommendations to address these challenges.


Is there a role for statistics in artificial intelligence?

arXiv.org Artificial Intelligence

The research on and application of artificial intelligence (AI) has triggered a comprehensive scientific, economic, social and political discussion. Here we argue that statistics, as an interdisciplinary scientific field, plays a substantial role both for the theoretical and practical understanding of AI and for its future development. Statistics might even be considered a core element of AI. With its specialist knowledge of data evaluation, starting with the precise formulation of the research question and passing through a study design stage on to analysis and interpretation of the results, statistics is a natural partner for other disciplines in teaching, research and practice. This paper aims at contributing to the current discussion by highlighting the relevance of statistical methodology in the context of AI development. In particular, we discuss contributions of statistics to the field of artificial intelligence concerning methodological development, planning and design of studies, assessment of data quality and data collection, differentiation of causality and associations and assessment of uncertainty in results. Moreover, the paper also deals with the equally necessary and meaningful extension of curricula in schools and universities.


Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy

arXiv.org Artificial Intelligence

Precision health leverages information from various sources, including omics, lifestyle, environment, social media, medical records, and medical insurance claims to enable personalized care, prevent and predict illness, and precise treatments. It extensively uses sensing technologies (e.g., electronic health monitoring devices), computations (e.g., machine learning), and communication (e.g., interaction between the health data centers). As health data contain sensitive private information, including the identity of patient and carer and medical conditions of the patient, proper care is required at all times. Leakage of these private information affects the personal life, including bullying, high insurance premium, and loss of job due to the medical history. Thus, the security, privacy of and trust on the information are of utmost importance. Moreover, government legislation and ethics committees demand the security and privacy of healthcare data. Herein, in the light of precision health data security, privacy, ethical and regulatory requirements, finding the best methods and techniques for the utilization of the health data, and thus precision health is essential. In this regard, firstly, this paper explores the regulations, ethical guidelines around the world, and domain-specific needs. Then it presents the requirements and investigates the associated challenges. Secondly, this paper investigates secure and privacy-preserving machine learning methods suitable for the computation of precision health data along with their usage in relevant health projects. Finally, it illustrates the best available techniques for precision health data security and privacy with a conceptual system model that enables compliance, ethics clearance, consent management, medical innovations, and developments in the health domain.


Privacy-preserving Artificial Intelligence Techniques in Biomedicine

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has been successfully applied in numerous scientific domains including biomedicine and healthcare. Here, it has led to several breakthroughs ranging from clinical decision support systems, image analysis to whole genome sequencing. However, training an AI model on sensitive data raises also concerns about the privacy of individual participants. Adversary AIs, for example, can abuse even summary statistics of a study to determine the presence or absence of an individual in a given dataset. This has resulted in increasing restrictions to access biomedical data, which in turn is detrimental for collaborative research and impedes scientific progress. Hence there has been an explosive growth in efforts to harness the power of AI for learning from sensitive data while protecting patients' privacy. This paper provides a structured overview of recent advances in privacy-preserving AI techniques in biomedicine. It places the most important state-of-the-art approaches within a unified taxonomy, and discusses their strengths, limitations, and open problems.


Explainable Artificial Intelligence: a Systematic Review

arXiv.org Artificial Intelligence

This has led to the development of a plethora of domain-dependent and context-specific methods for dealing with the interpretation of machine learning (ML) models and the formation of explanations for humans. Unfortunately, this trend is far from being over, with an abundance of knowledge in the field which is scattered and needs organisation. The goal of this article is to systematically review research works in the field of XAI and to try to define some boundaries in the field. From several hundreds of research articles focused on the concept of explainability, about 350 have been considered for review by using the following search methodology. In a first phase, Google Scholar was queried to find papers related to "explainable artificial intelligence", "explainable machine learning" and "interpretable machine learning". Subsequently, the bibliographic section of these articles was thoroughly examined to retrieve further relevant scientific studies. The first noticeable thing, as shown in figure 2 (a), is the distribution of the publication dates of selected research articles: sporadic in the 70s and 80s, receiving preliminary attention in the 90s, showing raising interest in 2000 and becoming a recognised body of knowledge after 2010. The first research concerned the development of an explanation-based system and its integration in a computer program designed to help doctors make diagnoses [3]. Some of the more recent papers focus on work devoted to the clustering of methods for explainability, motivating the need for organising the XAI literature [4, 5, 6].


An Overview of Privacy in Machine Learning

arXiv.org Artificial Intelligence

Over the past few years, providers such as Google, Microsoft, and Amazon have started to provide customers with access to software interfaces allowing them to easily embed machine learning tasks into their applications. Overall, organizations can now use Machine Learning as a Service (MLaaS) engines to outsource complex tasks, e.g., training classifiers, performing predictions, clustering, etc. They can also let others query models trained on their data. Naturally, this approach can also be used (and is often advocated) in other contexts, including government collaborations, citizen science projects, and business-to-business partnerships. However, if malicious users were able to recover data used to train these models, the resulting information leakage would create serious issues. Likewise, if the inner parameters of the model are considered proprietary information, then access to the model should not allow an adversary to learn such parameters. In this document, we set to review privacy challenges in this space, providing a systematic review of the relevant research literature, also exploring possible countermeasures. More specifically, we provide ample background information on relevant concepts around machine learning and privacy. Then, we discuss possible adversarial models and settings, cover a wide range of attacks that relate to private and/or sensitive information leakage, and review recent results attempting to defend against such attacks. Finally, we conclude with a list of open problems that require more work, including the need for better evaluations, more targeted defenses, and the study of the relation to policy and data protection efforts.


Interactions in information spread: quantification and interpretation using stochastic block models

arXiv.org Machine Learning

In most real-world applications, it is seldom the case that a given observable evolves independently of its environment. In social networks, users' behavior results from the people they interact with, news in their feed, or trending topics. In natural language, the meaning of phrases emerges from the combination of words. In general medicine, a diagnosis is established on the basis of the interaction of symptoms. Here, we propose a new model, the Interactive Mixed Membership Stochastic Block Model (IMMSBM), which investigates the role of interactions between entities (hashtags, words, memes, etc.) and quantifies their importance within the aforementioned corpora. We find that interactions play an important role in those corpora. In inference tasks, taking them into account leads to average relative changes with respect to non-interactive models of up to 150\% in the probability of an outcome. Furthermore, their role greatly improves the predictive power of the model. Our findings suggest that neglecting interactions when modeling real-world phenomena might lead to incorrect conclusions being drawn.