Pietikäinen, Matti, Silven, Olli
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
Nikolentzos, Giannis | Siglidis, Giannis | Vazirgiannis, Michalis (Ecole Polytechnique)
Graph kernels have attracted a lot of attention during the last decade, and have evolved into a rapidly developing branch of learning on structured data. During the past 20 years, the considerable research activity that occurred in the field resulted in the development of dozens of graph kernels, each focusing on specific structural properties of graphs. Graph kernels have proven successful in a wide range of domains, ranging from social networks to bioinformatics. The goal of this survey is to provide a unifying view of the literature on graph kernels. In particular, we present a comprehensive overview of a wide range of graph kernels. Furthermore, we perform an experimental evaluation of several of those kernels on publicly available datasets, and provide a comparative study. Finally, we discuss key applications of graph kernels, and outline some challenges that remain to be addressed.
Nikolentzos, Giannis, Siglidis, Giannis, Vazirgiannis, Michalis
Graph kernels have attracted a lot of attention during the last decade, and have evolved into a rapidly developing branch of learning on structured data. During the past 20 years, the considerable research activity that occurred in the field resulted in the development of dozens of graph kernels, each focusing on specific structural properties of graphs. Graph kernels have proven successful in a wide range of domains, ranging from social networks to bioinformatics. The goal of this survey is to provide a unifying view of the literature on graph kernels. In particular, we present a comprehensive overview of a wide range of graph kernels. Furthermore, we perform an experimental evaluation of several of those kernels on publicly available datasets, and provide a comparative study. Finally, we discuss key applications of graph kernels, and outline some challenges that remain to be addressed.